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Abstract

With adequate experience, listeners im-
prove their ability to comprehend accented
speech. Previous work demonstrates that
listeners who adapt to one accented talker
generalize that adaptation to other ac-
cented talkers - exposure to multiple talk-
ers of the same accent facilitates com-
prehension of a novel talker of that ac-
cent (Bradlow & Bent, 2008) and expo-
sure to multiple novel accents facilitates
comprehension of yet another novel accent
(Baese-Berk, Bradlow, & Wright, 2013).
We propose a model of accent adaptation
in which the task of accent adaptation is
represented as a problem of hierarchical
Bayesian inference, which assumes that
listeners simultaneously learn about the
distribution of talkers, accent groups, and
accented speech more generally. We show
that a hierarchical Bayesian model can
predict qualitative findings of generaliza-
tion of accent adaptation, but that a non-
hierarchical model cannot. The hierarchi-
cal Bayesian model also provides better
quantitative predictions about sentence-
level performance at test. Taken together,
these findings support a view of accent
adaptation as hierarchical inference.

1 Introduction

Effective speech recognition requires that listeners
cope with variability, despite the associated com-
putational difficulties. Work in perceptual learning
demonstrates impressive coping strategies funda-
mental to speech processing despite the variabil-
ity present (Norris, McQueen, & Cutler, 2003; Ny-
gaard & Pisoni, 1998).

These coping strategies are also present when

processing accented speech. Clarke and Gar-
rett (2004) found that although initial processing
speed is slower for accented speech, this deficit
diminishes within one minute of exposure. For ro-
bust speech perception, listeners may learn about
talkers and generalize what they have learned from
one talker to another.

Sidaras, Alexander, and Nygaard (2009) found
that listeners adapt to accent-general regularities
and generalize those adaptations to novel accented
talkers. Bradlow and Bent (2008) found simi-
lar generalization effects, providing evidence that
accent adaptation occurs both talker-dependently
and talker-independently. Beyond generalization
of accent adaptation within and across talkers,
there is also evidence of generalization across ac-
cents (Baese-Berk et al., 2013).

In this paper, we propose a model of generaliza-
tion in accent adaptation as a form of hierarchical
inference under uncertainty, where listeners simul-
taneously learn the properties of accented speech
at talker-specific, accent-specific, and cross-accent
levels. Previous work in has demonstrated that
learners may benefit from exploiting underlying
structure present in cross-situation variation to rec-
ognize familiar situations and generalize to similar
situations (Pajak, Fine, Kleinschmidt, & Jaeger,
2016; Pajak, Bicknell, & Levy, 2013; Klein-
schmidt & Jaeger, 2015; Nielsen & Wilson, 2008).

We use a new dataset of phonetically tran-
scribed non-native-accented speech to determine
if this model can reproduce the key empirical re-
sults known about generalization in accent adap-
tation and assess its quantitative ability to pre-
dict sentence-level comprehension of non-native-
accented speech.



2 Generalization of Accent Adaptation

Much of the empirical evidence about generaliza-
tion in accent adaptation comes from Bradlow and
Bent (2008) and Baese-Berk et al. (2013). These
studies had similar designs, in which participants
were first exposed to a sequence of English sen-
tences spoken in non-native accented speech from
one or more talkers (‘training’), and were tested
on the speech of a Mandarin-accented talker and
a Slovakian-accented talker (‘test’). During both
training and test, participants transcribed (in En-
glish) the foreign-accented speech, and the test
portion of this was scored for transcription ac-
curacy. The experiments manipulated which non-
native accented talkers participants were exposed
to during training. These studies found three criti-
cal differences between training conditions, which
represent most of our empirical knowledge about
how non-native accent adaptation is generalized
across talkers and accents.

Talker Variability Advantage: Training on mul-
tiple talkers of an accent is more helpful when
testing on that accent than training on a single
talker of that accent. Bradlow and Bent (2008)
demonstrated this principle by showing that par-
ticipants trained on five Mandarin-accented talk-
ers (Multi-talker training) performed better when
tested on a new Mandarin-accented talker than
participants trained on a single Mandarin-accented
talker (Single-talker training).

Talker Specificity Advantage: Training on the
same talker which you are later tested on is more
helpful than training on multiple talkers of the
same accent. Bradlow and Bent (2008) demon-
strated this principle by showing that partici-
pants trained on the Mandarin-accented test talker
(Talker-specific training) performed even better
than participants with Multi-talker training.

Accent Variability Advantage: Training on talk-
ers of multiple non-native accents is more help-
ful when testing on a new non-native accent
than training on multiple talkers of a single non-
native accent. Baese-Berk et al. (2013) demon-
strated this principle by showing that participants
trained on five talkers each with a different (non-
Slovakian) non-native accent (Multi-accent train-
ing) performed better when tested on a Slovakian-
accented talker than participants trained on five
Mandarin-accented talkers.

3 Hierarchical Inference

Here, we propose that each of these findings about
generalization in accent adaptation can be ex-
plained in terms of hierarchical inference. Specif-
ically, we suggest that listeners learn about the
speech patterns of individual talkers, abstract that
to learn about regularities within non-native accent
groups, and abstract that further to learn about reg-
ularities within non-native accents in general. Pre-
vious work has found robust evidence that hierar-
chical inference can well capture human language
learning behavior (Pajak et al., 2016, 2013; Klein-
schmidt & Jaeger, 2015; Hitczenko & Feldman,
n.d.; Nielsen & Wilson, 2008).

Under this proposal, the Talker Variability Ad-
vantage would arise from the fact that multiple
talkers of an accent give more information about
properties of that accent than a single talker. Bet-
ter information about the properties of that accent
would yield better predictions for the properties of
a new talker of that accent, and thus higher perfor-
mance. For example, when being trained on just a
single talker, it is unclear how much of that talker’s
speech patterns are idiosyncratic rather than repre-
sentative of their accent group, whereas when be-
ing trained on multiple talkers of the same accent
the commonalities are clearer.

The Talker Specificity Advantage, on the other
hand, would arise in a different way in this pro-
posal. Although multiple talkers of the same ac-
cent provide more information about the proper-
ties of an accent as a whole (and thus the best pre-
dictions about a new talker of that accent), a sin-
gle talker provides the most information about that
talker’s own properties, including both idiosyn-
cratic and accent-general elements.

Finally, the Accent Variability Advantage
would have an explanation analogous to that of the
Talker Variability Advantage. Just as multiple talk-
ers of an accent provide the best information about
that accent’s properties that are useful to make pre-
dictions about a new talker of that accent, talkers
of multiple non-native accents provide the best in-
formation about the properties of non-native ac-
cents in general and thus yield the best predictions
about the speech of a talker of a new accent.

We test the extent to which hierarchical infer-
ence could be responsible for generalization of
adaptation by presenting and evaluating a compu-
tational model of hierarchical Bayesian inference.



4 Model

In the current work, we characterize the proper-
ties of non-native speech in terms of segmental-
level errors it contains (e.g., /T/ → /z/), which
have been associated with the most salient fea-
tures of non-native-accented speech (Reinisch &
Holt, 2014; Anderson-Hsieh, Johnson, & Koehler,
1992). The representation of errors at the segment-
level allows for generalization across words while
remaining specific to previously encountered seg-
ments (but see Linzen & Gallagher, in press, for
evidence of rapid featural-level generalization).

We number types of segmental errors from 1 to
ne. We denote the number of times that talker i
of accent k makes error j as d(k)i,j . Exposure to a
training condition is formally denoted as observ-
ing a d(k)i,j error count for each error type and each
of nt(k) talkers in each of na accents k.

We formalize the task of accent adaptation as
a form of Bayesian inference under uncertainty.
Listeners are exposed to talkers that make errors
a varying number of times and use this exposure
to make predictions about how likely those talkers
or some other talkers will be to make each error in
the future. Our linking hypothesis to performance
is that a listener with more accurate predictions
about a talker’s set of errors at test (i.e., a listener
that assigns that talker’s sets of errors a higher
probability) will be more accurate at transcribing
that talker’s speech. We infer the probability via
Bayesian inference in a formal generative model,
which sets up a formal process by which accented
speech is generated.

4.1 Hierarchical Bayesian model

The hierarchical Bayesian model infers three lev-
els of hierarchical error rates: the error rates of in-
dividual talkers, the average error rates of distinct
accents, and the average rates of errors across non-
native accents. From these inferences, the model
can make predictions about familiar talkers as well
as novel talkers belonging to both novel and famil-
iar accent groups. For these purposes, we assume
that the model has perfect knowledge of talker
identities and accent groupings. The assumption
that listeners have perfect knowledge of when they
have heard the same talker is a relatively weak
assumption, in this case, as the only time listen-
ers must recognize that the test talker is the same
as the training talker is in the talker specific con-
dition. In this condition, listeners hear the same
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Figure 1: Graphical models for hierarchical
Bayesian model (left) and baseline model (right).

talker across all training and test. We further as-
sume here that all errors are independent of each
other (observing the error /T/ → /d/ doesn’t af-
fect the probability of making the error /T/→ /z/).
We deem this simplifying assumption to be a rea-
sonable approximation of non-native speech er-
rors. Relatedly, we assume that the errors talkers
make are independent of the words they produce
for computational simplicity. While this is empir-
ically untrue, the more words talkers produce, the
better approximation this will be.

4.1.1 Formal Generative Model
The highest level of hierarchy in the model (Figure
1 (left)) is the mean of (log) error rates across ac-
cents for an error type j, µj , which has a Gaussian
prior with hyper-parameters µµ and σ2µ.

µj ∼ N (µµ, σ
2
µ) (1)

Mean (log) error rates of each accent are normally
distributed around this mean with variance σ2a.

a
(k)
j ∼ N (µj , σ

2
a) (2)

Within each accent, talkers’ (log) error rates are
drawn from a normal distribution centered at a
mean a(k) with a variance of σ2t .

t
(k)
i,j ∼ N (a

(k)
j , σ2t ) (3)
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Figure 2: The three ways that a single observed
d
(k)
i,j node can help predict a new d

(k)
i,j node. Within

a talker (green) information flows from the ob-
served d, to its respective t. Within an accent
(blue) information flows from the observed d, to
its respective t, up to that talker’s a. Across ac-
cents (red) information flows from the observed d,
to its respective t, up to that talker’s a, further up
to µ.

Finally, errors d(k)i,j are Poisson-distributed given

the rate for that accent, talker, and error type t(k)i,j
over that talker’s amount of speech exposure, `i.

d
(k)
i,j ∼ Poisson(exp(t(k)i,j ) · `i) (4)

4.1.2 Inference
Bayesian inference inverts this graphical model.
Exposure to error counts d(k)i,j updates beliefs about

that talker’s rates of making that error t(k)i,j , which
in turn updates beliefs about the average rates of
making that error by talkers belonging to the same
accent a(k)j , which updates beliefs about the over-
all rate at which non-native accents produce that
error µj . This hierarchical structure allows the
model to generalize strongly from a talker’s er-
rors at one time to that same talker’s errors at an-
other time, relatively weaker generalization from
one talker to another within the same accent group,
and the weakest generalization from a talker of one
accent to a talker of a different accent group.

The model makes strong generalizations within
a talker because listeners make direct inferences
about the talker’s error distribution from that
talker’s (log) error rates (Figure 2). Within an ac-
cent, the model makes relatively weaker general-

izations. Listeners not only infer the first talker’s
error rates but also other talkers’ of the same
accent and subsequently use the distribution of
accent-level (log) error rates to make predictions
about what a new talker’s error rates will be.
Nonetheless, increasing the amount of exposure to
talkers belonging to one accent group allows the
model to be more confident in its predictions about
error space for that accent. Across accent general-
ization is the weakest as information flows further
up the tree than in the previous two cases. Listen-
ers simultaneously infer multiple talker (log) error
rates belonging to different accent groups and use
the distribution of non-native error rates to make
inferences about a novel talker and accent.

4.2 Baseline model

To determine the extent to which hierarchical in-
ference is critical to the predictions of the model,
we also construct a Baseline model that works
similarly, but lacks hierarchy, as seen in Figure
1 (right). This model cannot distinguish between
different talkers or accents. Thus, the generaliza-
tion process is equivalent following exposure to
the same talker at training and test, differing talk-
ers of the same accent, and different accents.

4.2.1 Formal Generative Model
Errors are taken to be Poisson-distributed given an
overall log rate parameter µj .

di,j ∼ Poisson(exp(µj) · `i) (5)

Overall (log) error rates have the same prior as the
overall (log) rates in the hierarchical model.

µj ∼ N (µµ, σ
2) (6)

4.2.2 Inference
There is only one path of inference in this model
(Figure 3): listeners infer the overall rate for each
error and use this rate to predict the error data of
a test talker, regardless of any relationships be-
tween test and training talkers. Thus, inferences
are equally strong within a talker as across accents.

5 Qualitative Evaluation

To evaluate model performance, we test its ability
to predict the qualitative patterns seen in Bradlow
and Bent (2008) and Baese-Berk et al. (2013).
Specifically, we use the model to compute, for
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Figure 3: Graphical representation of the flow of
information through the baseline model.

each condition, the probability of the errors made
by a test talker given the errors made by the train-
ing talkers. Here, we aim to see if the model can
capture the three advantages seen in prior work
on generalization in accent adaptation (Bradlow &
Bent, 2008; Baese-Berk et al., 2013). The model is
deemed successful to the extent that it predicts the
test talker to be higher probability in the training
condition that saw better performance.

5.1 Method
5.1.1 Dataset
The non-native speech from both training and
test talkers in the Bradlow and Bent (2008) and
Baese-Berk et al. (2013) studies was transcribed to
IPA by two phonetic-trained native-English tran-
scribers. Any differences were resolved by a third
such transcriber.

5.1.2 Alignment
For each word that did not match its correct pro-
nunciation, we estimated the best alignment of
the produced and correct IPA pronunciation using
the Needleman-Wunsch Algorithm (Needleman &
Wunsch, 1970), which finds the minimal set of
insertions, deletions, and substitutions needed to
transform the correct pronunciation into the pro-
duced pronunciation.1 From these alignments, we
can extract the implied set of segmental phonolog-
ical errors that were made. For example, if /fAd@/
was uttered instead of the intended /fAð@r/, the two
errors would be /ð/→ /d/ and /r/→ ∅.

The resulting dataset, comprised of all test and
training talkers, contained 265 error types with a
total of 1,155 errors made.

5.1.3 Generating Model Predictions
We set out to test the three qualitative properties
of generalization in accent adaptation established

1For ties, we preferred substitution then deletion.
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Figure 4: Graphical model of Multi-talker training
with observed training data in gray and predicted
test data in blue.

in Bradlow and Bent (2008) and Baese-Berk et
al. (2013). Each qualitative property represents a
significant difference between two training condi-
tions for a particular test talker. The models dis-
played in each of the figures show the path of in-
ference from a training condition to every possi-
ble test condition because participants were tested
on both a Mandarin-accented speaker as well as a
Slovakian-accented speaker.

Talker Variability Advantage: To test the
Talker Variability Advantage, we compare Multi-
talker training to Single-talker training and gen-
erate predictions about a Mandarin test talker in
each. The Multi-talker model (Figure 4) takes
as input error data from five Mandarin-accented
talkers in the Multi-talker condition d

(1)
i,j where

i ∈ {1...5}. The model makes predictions about
a novel Mandarin-accented talker, d(1)6,j .

The Single-talker model (Figure 5) observes
data from a single Mandarin-accented talker d(1)1,j

and makes predictions about a novel Mandarin-
accented talker, d(1)2,j . There were four different
talkers used as training talkers in this condition.
Their resulting log probabilities were generated
separately and averaged to compute the overall
Single-talker training probability.

Talker Specificity Advantage: To test the
Talker Specificity Advantage, we generate model
predictions for the Multi-talker condition, ex-
plained above, and the Talker-specific condition
(Figure 6). This model was initialized using the
data from the Talker-specific condition which was
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Figure 5: Graphical model of Single-talker train-
ing and Mandarin test where observed training
data is in gray and predicted test data is in blue.
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Figure 6: Graphical model of Talker-specific train-
ing and Mandarin test with observed training data
in gray and predicted test data in blue.

observed by the model in the form of d(1)1,j . Thus,

t
(1)
1,j is being inferred from d

(1)
1,j and used to gener-

ate predictions about the same Mandarin-accented
talker d(1)

′

1,j .
Accent Variability Advantage: Finally, to test

the Accent Variability Advantage, we generate
model data for the Multi-talker condition and
Multi-accent with Slovakian test. The Multi-talker
model (Figure 4) was initialized with the same
training data as in the Mandarin test case, but pre-
dictions were generated for a new talker with a
novel accent d(6)1,j . The Multi-accent model (Figure
7) was initializedthe model predictions improve.
When the parametrization has a higher value of
using training data from the Multi-accent condi-
tion in the form of d(k)i,j where i ∈ {1...5} and
(k) ∈ {1...5}. Predictions are made for new talker
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Figure 7: Graphical model of Multi-accent train-
ing with observed training data in gray and pre-
dicted test data in blue.

of a new accent d(6)1,j .

5.1.4 Inference
We estimate the probabilities of the errors made by
a test talker given the model samples and a partic-
ular set of errors observed in training in a two-step
process. As a first step, we performed Hamiltonian
Markov chain Monte Carlo (MCMC) sampling on
all unknown variables in the model2, but exclud-
ing the d(k)i,j representing the test talker’s errors.
We performed MCMC in RStan with 5,000 sam-
ples for each of 4 chains, and excluded the first
half of each chain as warm-up, resulting in 10,000
MCMC samples. To assess convergence, we veri-
fied that the R̂ of each sampled variable was less
than 1.1.

As a second step, we computed the probability
of the errors made by the test talker by averaging
the probabilities of these errors under each of the
10,000 sampled t(k)i,j values.

5.1.5 Parameters
We select variance parameters represented by σ2t
and σ2a σ

2
µ. These variances could, in principle,

be estimated using the error dataset. However the
values could take on an infinite number of pos-
sible negative log error rates which would make
for difficut estimation accuracy. For the hierarchi-
cal Bayesian model, variance parameters σ2t and
σ2a vary between values of .5 and 4, representing
large and small expectations of similarity within

2For computational simplicity, we integrated out a(k)j and
µj nodes where possible.



hierarchical Bayesian model
σ2
a = .5 σ2

a = 4
σ2
t = .5 X X
σ2
t = 4 X X

baseline model
σ2 = 5 σ2 = 12
X X

Table 1: Check marks encode the model’s ability
correctly predict the Talker Variability Advantage.

and across accents. The σ2µ used in the prior on µ
is set to 4.

The single variance parameter of the baseline
model σ2 is semantically equivalent to the sum of
the σ2t , σ2a, and σ2µ parameters from the hierarchi-
cal model. To use values at the extremes of the pa-
rameter space we tested for the hierarchical model,
we thus test σ2 = 5 and σ2 = 12, which is derived
from σ2t + σ2a + σ2µ where σ2µ is initialized at 4.

The hyper-prior mean µµ is initialized at
log(.5402) in each instantiation of the model,
computed as the log of the mean rate of errors seen
in all training talkers. The `i values are set to the
number of lists of sentences spoken by each train-
ing talker and test talker.

5.2 Results

We evaluate the model’s performance by its abil-
ity to predict the three critical advantages present
in previous work in accent adaptation. The model
is deemed successful to the extent that it recovers
each of these three advantages.

5.2.1 Talker Variability Advantage
As seen in Table 1 (top), performance of the hi-
erarchical Bayesian model depends on the vari-
ance values used. When the across talker varia-
tion is low, the hierarchical Bayesian model cannot
recover the Talker Variability Advantage. How-
ever, as σ2t increases, the model predictions more
closely resemble human performance.

With low between-talker variance (σ2t = .5), the
model is equally confident in a new talker’s error
distribution regardless of whether it was trained on
a single talker or five distinct talkers. We see the
model recover the Talker Variability Advantage as
the between-talker variance increases because the
model needs many independent data points from
that accent (i.e. different talkers) to be confident

in its predictions. Increasing the variance param-
eters decreases the amount of generalization be-
cause the model expects talkers and accents to be
more different from one another.

The baseline model lacks the hierarchy neces-
sary to learn about talker-specific, accent-specific
and accent-general properties. Its generalizations
from talker to talker are equally strong regardless
of training condition. The baseline model predicts
the test data to be higher probability given train-
ing in the Single-talker condition than the Multi-
talker condition (Table 1, bottom). Because the
baseline model is unable to differentiate talkers,
exposure to many talkers in the Multi-talker con-
dition results in false confidence about what a new
talker’s error distribution will look like, making
performance in this condition worse than that of
the Single-talker condition.

5.2.2 Talker Specificity Advantage
Both the hierarchical Bayesian model and the
baseline model reveal the effects of the Talker
Specificity Advantage regardless of the variance
parameters selected. This result is reasonable
given that this model makes predictions based on
talker similarity. When the training talker is the
same as the test talker there is a great deal of
similarity in the distribution of errors making this
condition higher probability. Further, we see the
same disadvantage of overconfidence in the base-
line model for the Multi-talker condition.

5.2.3 Accent Variability Advantage
Both the hierarchical Bayesian model and the
baseline model exhibit the Accent Variability Ad-
vantage regardless of the variance parameters se-
lected. The structure of the hierarchical model al-
lows for different inferences to be made for dis-
tinct accents. The baseline model, because it can-
not differentiate between talkers, should, in prin-
ciple, see equivalent performance in Multi-talker
and Multi-accent training. However, the baseline
model captures the Accent Variability Advantage
because empirically the error distribution of the
Slovakian test talker is more similar to the Multi-
accent condition.

5.3 Discussion

By formalizing the task of accent adaptation as a
form of Bayesian inference, the baseline model
successfully recovers the Talker Specificity Ad-
vantage as well as the Accent Variability Advan-



tage. The Hierarchical Bayesian model success-
fully recovers both these advantages as well as
the Talker Variability Advantage. The hierarchi-
cal captures the ability of speakers to do narrow
generalization - generalization across individuals
yields an accurate accent-level hypothesis.

6 Quantitative Evaluation

The evaluations of the previous section revealed
that the hierarchical Bayesian model predicts qual-
itative patterns seen in previous work where in one
case the baseline model could not. However, that
analysis had limited power. We would like to eval-
uate the model’s predictive power at a more fine-
grained level – performance at the sentence level.
Here, we use mixed-effects regression models to
analyze the models’ ability to predict participant
performance.

In Bradlow and Bent (2008) and Baese-Berk et
al. (2013), participants were tasked with transcrib-
ing accented speech. We obtained the participant
transcription data from Baese-Berk et al. (2013).
The transcriptions were later scored at the sen-
tence level. Here, we test the model’s ability to
predict sentence-level accuracy in the Baese-Berk
et al. (2013) study.

6.1 Method
In the previous evaluation, we tested the model’s
ability to make correct predictions in the aggre-
gate. The scores associated with each participant
were based on the number of key words correct
per sentence. The data for this evaluation includes
only the Multi-talker and Multi-accent training
conditions with Mandarin and Slovakian test talk-
ers. We scored the participant data by whether the
participant transcribed all key words correctly in
the sentence.

6.1.1 Generating Model Predictions
We generate predictions for two training condi-
tions, Multi-talker and Multi-accent, and for both a
Slovakian-accented and a Mandarin-accented test
talker. These conditions are visualized in Figure 4
and Figure 7. For each training condition, we es-
timate the log probability of the errors contained
within each test sentence given the observed train-
ing data.

6.1.2 Parameters
We again test a number of different parameteriza-
tions of σ2a and σ2t , once again testing values rang-

ing between .5 and 4 for the hierarchical Bayesian
model, but now exploring the space fully, σ2a and
σ2t ∈ {0.5, 1, 2, 4}. The σ2µ value is again set to 4.
We cover a similar space for the baseline model,
with σ2 ∈ {5, 6, 8, 12}.

The hyper-prior mean µµ, is again initialized at
log(.5402). The `i parameters are set as before for
training talkers and to 1/16 of a list for each test
talker, as we are making predictions at the sen-
tence level and lists contained 16 sentences.

6.1.3 Analysis
We quantitatively assess the predictive power of
these log probabilities for each sentence and con-
dition in a logistic mixed-effects regression model
predicting binary sentence accuracy. These regres-
sions included a single fixed effect of interest, the
model-generated log probability of the test sen-
tence in the particular training condition, and also
a fixed effect of the number of errors in this test
sentence. Random intercepts for each participant
and sentence were also included 3

We assess the strength of model predictions in
two ways. First, we compare each model to an-
other similar logistic model that replaced the fixed
effect of model-predicted log probability with a 4-
level effect of experimental condition (2 training
conditions crossed with 2 test conditions). Outper-
forming this baseline means that the model’s pre-
dictions provide a better unified way of summariz-
ing the data beyond knowing the main effects and
interactions of training and test conditions. We for-
mally compare these models using Bayes factors,
which can be approximated by exponentiating half
their difference in Bayesian information criterion
(BIC) values (Wagenmakers, 2007). The strength
of each Bayes Factor is visualized in Table 2 (Kass
& Raftery, 1995). We further assess the strength of
the hierarchical model predictions by comparing it
to the logistic model with a fixed effect of the sin-
gle best baseline model-predicted log probability.

6.2 Results

The results of this quantitative analysis are visu-
alized in Figure 8 and Figure 9. The log proba-
bilities estimated from the hierarchical Bayesian
model vary in predictive quality across variance
parameter space. In certain parts of the space,
namely as σ2a increases, the Bayes Factor com-

3Because the goal is not significance testing against a null
hypothesis, we do not include random slopes, to simplify the
model.
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Figure 8: Bayes Factor comparing model predic-
tions to condition labels for 4 variance parameter
values in the baseline model (left) and 16 in the
hierarchical Bayesian model (right).
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Figure 9: Bayes Factor comparing hierarchical
model predictions to baseline model predictions.

paring model predictions as a predictor variable to
condition as a predictor variable reaches very high
values, demonstrating the strength of the hierar-
chical model’s predictions. Predictions also gen-
erally improve as σ2t increases. We saw the same
effect in the qualitative evaluation: increasing the
variances decreases the amount of generalization
in that the model expects talkers and accents to be
more distinct from one another.

Throughout variance parameter space, the base-
line model’s predictive power does not change and
does not reach a Bayes Factor above 46 (Figure 8,
left). Nevertheless, even a Bayes Factor of 46 rep-
resents "strong" evidence that the predictions of
the baseline model are also to be preferred to sim-
ple condition labels.

When the two models are compared (Figure 9)
we see a similar pattern across parameter space.
Specifically, we yet again see positive evidence, in
some parts of parameter space, that the hierarchi-
cal model is a better predictor of the test data than
the baseline model.

6.3 Discussion

While both the baseline model and the hierarchical
model are stronger predictors than training condi-
tion, the hierarchical model outperforms the base-
line model. The hierarchy present in the hierar-
chical Bayesian model is crucial to its predictive
power. The predictive power of the hierarchical
Bayesian model increases as σ2a increases. Regard-
less of the σ2 parameters selected for the baseline
model, its predictive power does not change.

7 General Discussion

The two models introduced in this work assume
that the task of accent adaptation is a form of
Bayesian inference. Crucially, however, the model
which successfully recovers all of the three advan-
tages of accent adaptation is the model which in-
corporates hierarchy into the modelling process.
This model not only predicts these qualitative pat-
terns, but it is a stronger predictor of sentence-
level performance than training condition in the
Baese-Berk et al. (2013) study. Taken together,
these results support a view of accent adaptation
as hierarchical Bayesian inference.
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