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ABSTRACT 

The Effects of Structural Context on Priming 

 

 Meredith Larson 

Previous research has found that the recent processing of a linguistic form (e.g. word or syntactic 

pattern) facilitates its reuse. A separate line of research has found that the appearance of a 

linguistic form in certain structural contexts (e.g. the focus position of a cleft sentence) can 

increase the likelihood of a form’s reuse. However, these two lines have not explored whether 

the structural context in which a recently-processed form occurred mediates the facilitatory 

effects of recent processing.  I contend that such mediation exists. Specifically, I propose that the 

way a structural context is processed affects how memory represents the processing event and 

how the linguistic forms associated with that structural context are represented in memory. I 

further contend that differences in these representations affect the subsequent accessibility of the 

forms.  

 I present a series of priming studies that support this proposal by showing that the 

facilitatory effects of a form’s recent processing are attenuated when the form occurred in 

particular structural contexts. By holding time constant and varying only the structural context in 

which a lexical or syntactic form occurred, I demonstrate that some structural contexts 

undermine forms’ reuse. Specifically, speakers are slower to identify lexical primes occurring in 

the internal complements of nouns (e.g. the bolded word in “David knew the fact that the man 

kissed Sophia”) relative to primes occurring in other structural contexts (e.g. a relative clause 
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“David knew the man who kissed Sophia” or a main clause “As David knew, the man kissed 

Sophia”). Similarly, speakers exhibit less-stable structural priming for primes occurring in the 

internal complements of verbs (“David knew that the man kissed Sophia”) relative to primes 

occurring in other structural contexts.  

 To clarify the source of structural context’s affects on priming behavior, I present a novel 

activation-based model of language processing. My model describes how linguistic forms are 

retrieved and manipulated during processing and how the memory traces of linguistic forms are 

affected by structural contexts. During processing, the processor retrieves encoded memory 

traces for target linguistic forms. Features of these memory traces, such as how recently they 

were created and the number of forms (e.g. other words) associated with the memory trace, affect 

the processor’s ability to reuse the target form. I argue that processing some structural contexts 

(e.g. those containing argument clauses such as the internal complements of verbs) leads to 

memory traces with more competing forms than the traces generated during the processing of 

other structural contexts (e.g. those containing adjunct clauses such as relative clauses). The 

differing number of competing forms associated with the memory trace stems from the 

processing of different structural contexts and ultimately affects the processor’s ability to reuse 

recently encountered linguistic forms. 
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GLOSSARY OF TERMS 

ACTIVE CONTROL THOUGHT-RATIONAL (ACT-R): a general model of human cognition that 

accounts for behaviors ranging from language processing to arithmetic. 

ACTIVATION (WEIGHT):  the record of a linguistic form’s history of use, including its baseline, 

or resting activation weight, plus any activation boost due to recent processing minus a 

function of decay. 

ASSOCIATIVE ACTIVATION: the boost a form receives from retrieval cues in the current context 

(Anderson and Schuun 2000). 

BASE LEVEL ACTIVATION: a numerical value associated with a declarative chunk that denotes 

its history of use and is calculated using the formula 

Bi = ln � tj−d
�

��	
 

BUFFER SYSTEM: a system of temporary stores in working memory for information from long-

term memory. 

CENTRAL EXECUTIVE: a work space in working memory that manages the flow of information 

that comes from subsidiary slave systems (Baddeley & Hitch 1974). 

CONTEXT EFFECT: the hypothesis that the structural context in which a linguistic form occurs 

affects subsequent use of the form. 

CONTROL STATE BUFFER: one of the buffers in the ACT-R architecture (Anderson 1993 inter 

alia); tracks the overall goal of the task (e.g. ‘produce sentence with transitive verb’). 

DECAY: a constant function of deactivation for a linguistic form the onset of which begins when 

the form is no longer being processed. 

DECLARATIVE CHUNKS (LINGUISTIC): the memories that comprise declarative knowledge; 

memory templates for various grammatical units, which are labeled according to their 

maximal projections; each chunk consist of feature-value pairs, e.g. ‘num : SG’ would be 

the feature ‘number’ and the values ‘singular.’  

DECLARATIVE CHUNK BUFFER: one of the buffers in the ACT-R architecture (Anderson 1993 

inter alia); holds whatever particular declarative chunk is involved with the current goal 

state; can be empty given the current state of processing. 

DECLARATIVE KNOWLEDGE: the facts we know, such as the meaning of a particular word; 

generally consciously accessible and can be learned explicitly. 

EPISODIC BUFFER: one of the subsidiary slave systems that feeds information to the center 

executive; a temporary store of episodic information such as the temporal ordering of 

events (Baddeley 2000). 

IDENTITY PRIMING (also REPETITION PRIMING): the processing facilitation an item receives 

because the same lexical item (lemma or lexeme) was recently encountered. 

LEXICAL PRIMING: the facilitation in processing a lemma or lexeme receives due to the 

processing of lemma or lexeme. 

LONG-TERM MEMORY (LTM): the part of memory that holds all previously experienced 
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encounters (e.g. previously processed words); is unlimited; feeds information to working 

memory and receives information from working memory.   

PHONOLOGICAL LOOP: one of the subsidiary slave systems that feeds information to the center 

executive; a temporary store of phonological information such as the linear order of 

sounds in a speech stream (Baddeley 2000). 

POPPING (!POP!): the production rule that removes a chunk from the retrieval buffer making it 

available for unification; occurs only when the chunk contains no open values in its 

feature-value pairs. 

PRIMING: the facilitation a form receives in processing due to having recently been processed. 

PRIMING ACCORDING TO RICE (PRICE): the processing of both a prime form and its structural 

context affects how the form is represented, and differences in these representations 

affect subsequent priming behavior. 

PROBLEM STATE BUFFER: one of the buffers in the ACT-R architecture (Anderson 1993 inter 

alia); holds the particular subgoal being addressed (e.g. ‘produce subject for transitive 

verb’ or ‘produce a determiner phrase’). 

PROCEDURAL KNOWLEDGE: the knowledge necessary for performing actions; this knowledge is 

represented as a series of production rules that are not consciously accessible to the 

individual. 

PRODUCTION RULES: the memories that form procedural knowledge; take the form of condition-

action units or IF-THEN statements that specify goals, change states, and often lead to 

the creation of new subgoals; learned via analogy and are acquired implicitly. 

PRODUCTION RULE STRENGTH: a numerical value that reflects a production rule’s history of use 

and is calculated using the equation 

Sp = ln � tj−d
�

��	
 

RECENCY EFFECT:  the hypothesis that linguistic forms that have occurred recently exert more 

influence over subsequent behavior than those that have not occurred recently. 

RECENT INTERACTION WITH CONTEXT EFFECT (RICE): the hypothesis that the effect of a 

recently-encountered linguistic form on subsequent behavior is mediated by the way its 

structural context was processed. 

RELATION: any additional boost in activation weight that a declarative chunk receives from the 

other chunks in its context. 

RETRIEVAL: the process that selects memories and brings them into focus; is affected by 

relation, activation level, and a function of random noise for the retrieval if chunks; is 

affected by utility, strength, and a function of random noise for the retrieval of production 

rules. 

RETRIEVAL BUFFER: one of the buffers in the ACT-R architecture (Anderson 1993 inter alia); 

holds declarative chunks retrieved from memory that are currently involved processing. 

SEMANTIC PRIMING (both ‘associative’ and ‘semantic’): the facilitation in processing that a 

word, referent, or concept receives due to the processing of a related word, referent, or 

concept. 
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SLAVE SYSTEMS: subsidiary buffers for the central executive buffer in the Baddeley and Hitch 

(1974) buffer system model.  

SPREADING ACTIVATION: activation boost that results from the processing of a related linguistic 

form, for example, having processed the word cat will activate the sounds linked to the 

form (/k/, /Q/, /t/) and the semantic information linked to the form (e.g. PET). 

STRUCTURAL PRIMING: the facilitation in processing that a structural alternate receives due to 

the processing of a structural alternate. 

STRENGTH: see PRODUCTION RULE STRENGTH. 

TOTAL ACTIVATION WEIGHT: a numerical value that reflects the activation of a declarative 

chunk as determined by its base level activation plus any additional weight from its 

context (see RELATION). It is calculated using the equation 

Ai = Bi +Σj wjsji   

UNIFICATION: the process by which two structures are merged to generate a new, more specified 

structure that contains the union of all the feature-value pairs of the original structures. 

UNIFICATION CHAIN: a series of unification cycles that occur during the resolution of a single 

subgoal structure. 

UNIFICATION CYCLE: a successful unification operation during the processing of a sentence. 

UTILITY: a numerical value that reflects the expected gain associated with firing a production 

rule minus 

 the expected cost associated with the rule. It is calculated using the formula 

U = PG – C    

VISUOSPATIAL SKETCHPAD: one of the subsidiary slave systems that feeds information to the 

center executive; a temporary store of visual and spatial information such as shapes and 

their location in the environment (Baddeley 2000).  

WORKING MEMORY (WM): the part of memory that holds currently active information, is 

limited, receives information from long-term memory, and feeds information to long-

term memory. 
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1 CHAPTER  

 

Introduction 
 

What is courageous in one setting can be foolhardy in another and even cowardly 

in a third. ~ Joseph Epstein  

 

 

Consider an arabesque rug, with its many colors—like words—combining to make intricate, 

recurrent patterns. Whether a particular color appears light or dark depends on the colors around 

it, and although we have a memory for the overall pattern, the contribution of any single strand 

often eludes us. Similarly, language processing constantly weaves words and structures into 

dynamic, interconnected patterns—the interaction among the linguistic forms determining the 

way a sentence is comprehended or produced. Because of this interconnectedness, no single form 

can be completely decontextualized or divorced from the way it was initially processed or from 

the larger structural pattern in which occurred. The context in which a form occurs and our 

memory for this occurrence affect the way each word is interpreted, organized, and subsequently 

recalled. 

Although the recall of a sentence or linguistic form can be explicit, as in remembering a 

particular name, it is often implicit. The verbatim recall of surface details such as the exact 

ordering of adjectives and syntactic structure of a sentence after a few seconds has long been 

regarded as impossible, though the meaning of a sentence may be longer lasting (Altman 2001; 

Anderson, Budiu, & Reder 2001; Caplan 1972; Craik & Tulving 1975; Jarvell 1971; Kintsch 
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1974, 1998a,b; Sachs 1967). Still, the surface details and syntactic structure of a sentence 

influence subsequent behavior with the linguistic forms that comprised the sentence, and this 

influence of the sentence’s structure affects both immediate and long-term behavior. A sentence, 

its structure, or even the particular words within it do not need to be explicitly recalled for them 

to shape subsequent behavior. Simply encountering or processing a sentence changes the way 

speakers later use the words and structures that occurred in the larger sentence. 

One common linguistic behavior that demonstrates this type of change is called PRIMING. 

Priming refers to the facilitation a form receives in processing due to having recently been 

processed. It occurs at every level of language processing: the phonological, lexical, syntactic, 

conceptual, etc. Priming may even play a role in language learning and language change (e.g. 

Becker, Moscovitch, Behrmann, & Joordens 1997; Bock 1986a, b; Bock & Griffin 2000; Bock & 

Kroch 1989; Jäger & Rosenbach 2008a, b; Dell 1986; Hutchinson 2003; Lucas 2000; Pickering 

& Ferreira 2008; McNamara 2005). For example after reading the sentence “Sophia is my tabby 

cat,” speakers respond more quickly to the word cat, or to a semantically-related word (e.g. dog), 

or phonologically-related word (e.g. hat) (see McNamara 2005 for a review of lexical/semantic 

priming). The basic observation is that after processing a linguistic form—either through 

comprehension or production—speakers respond to the same form or related forms more 

quickly. 

 However, in many models of priming (e.g. Pickering & Branigan 1998), the amount of 
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time (delay) between the priming event and the subsequent target event matter.
1
 When the 

priming and target events are close to one another (e.g. the priming event immediately precedes 

the target), the prime form is more likely to influence linguistic performance in the target task 

than if the two were separated by many other events. Generally speaking, the closer the two 

events are, the stronger the priming effect is. This ‘recency’ effect has long been noted as a 

relevant factor in determining whether and to what degree a linguistic form influences behavior 

(e.g. Bock 1986b; Bjork & Whitten 1974; Brennan & Clark 1996; Deese & Kaufman 1957; 

Murdock 1962; Davelaar, Goshen-Gottstein, Haarmann, Ashkenazi, & Usher 2005; Howard & 

Kahana 1999; McNamara 2005; Pickering & Branigan 1998), leading to the hypothesis below: 

Recency Effect 

Linguistic forms that have occurred recently exert more influence over subsequent 

behavior than those that have not occurred recently. 

 

Although recency is a relevant factor in priming, it is not the only factor. Other aspects, such as 

the overall frequency of a form, also affect the extent to which a form primes.
2
  Still, the amount 

of time between the prime and target event is a common predictor of the amount of priming. 

Another factor that affects a form’s influence on subsequent behavior is how the form is 

processed in relation to its larger structural context. The structural context in which a form 

occurs can affect subsequent processing both in production and comprehension. For instance, 

structural context can affect verb agreement errors (e.g. “the code to the alarms were stolen”, see 

                                                 
1
 In models of priming that focus more on the implicit learning and long-term effects of priming (e.g. Bock & 

Griffin 2000), time is less relevant. They contend that the effects of priming are long-lasting and stable though there 

is a short-term lexical boost. 
2
 For example, both experimental data and computational models have found that less-frequent linguistic forms 

show greater priming effects then more-frequent forms (e.g. Anderson & Schuun 2000; Chang, Dell, Bock, & 

Griffin 2000; Ferreira 2003; Jaeger & Snider 2008; Van Rijn & Anderson 2003). 
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Bock & Cutting 1992; Bock, Nicol, & Cutting 1999; Bock & Miller 1991; Pearlmutter, Garnsey, 

& Bock 1999 inter alia), speech onset latencies and prosodic contours (e.g. Ferreira 1991, 

Kleinhow & Smith 2000, Krivokapic 2007, Watson & Gibson 2004), the ordering of constituents 

(Arnold, Wasow, Losongco, & Ginstrom 2000; Wasow 2002), and the resolution of pronouns 

and gaps (e.g. Clifton, Kennison, & Albrecht 1997; Nicol & Swinney 1989; Sturt 2003). For 

example, cleft structures like English it-clefts and wh-clefts (in (1) and (2) respectively) facilitate 

anaphor resolution. The proposed reason for this facilitation is that cleft structures produce 

stronger, more distinct memory representations for elements in their focused positions (bolded) 

than for those in ‘deemphasized positions’ (italics). These ‘deemphasized’ positions refer to the 

elements that are structurally subordinate (i.e. embedded) and pragmatically backgrounded in 

focus structures.
1
 

(1) It-cleft sentence 

      It was the robin that ate the apple. 

 

(2) Wh-cleft sentence 

      What the robin ate was the apple.  

 

Research suggests that being in the focus position can facilitate subsequent processing and 

response times for anaphors and can affect speakers’ predictions for and completions of 

subsequent discourse (Almor 1999; Almor & Eimas 2008; Birch, Albrecht & Myers 2000; Birch 

& Garnsey 1995; Foraker & McElree 2007; Morris & Folk 1998). For example, Almor (1999) 

found faster reading times for noun-phrase anaphors (e.g. “the bird” in (3) and (4)) when their 

antecedents (e.g. “the robin”) were in the focus position of a preceding cleft sentence.  

                                                 
1
 I will reserve the term non-focus positions to refer to elements that are in neither of these positions, such as “the 

robin” in the sentences “The robin ate the apple” or “The cat ate the robin.” 
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(3) It was the robin that ate the apple. The bird seemed satisfied. 

 

(4) What the robin ate was the apple. The bird seemed satisfied. 

 

In the it-cleft (3), “the robin” is in focus position, whereas in the wh-cleft (4), it is in a 

deemphasized position. When speakers arrived at the noun-phrase anaphor “the bird,” their 

reading times were shorter following sentences in which the antecedent (“the robin”)  was in 

focus position (sentences like (3)) versus when it was not in focus position (as in (4)). Had only 

recency mattered, then “the robin” in (3) and “the robin” in (4) should have led to the same 

facilitation (priming) at “the bird” because they both occurred in the same linear position, 

meaning they were the same number of words away from the target. The fact that a difference 

appeared suggests that reactivating an antecedent (prime) is easier when the antecedent occurred 

in the syntactic focus position in the priming sentence. The results of these studies lead to the 

following hypothesis, which I call the CONTEXT EFFECT. 

Context Effect 

The structural context in which a linguistic form occurs affects subsequent use of 

the form. 

 

 Given the hypotheses stated above, I contend that there are two crucial factors that 

predict a linguistic form’s effect on subsequent linguistic performance: 

i) when it was processed (recency) and  

ii) how it and its context were processed (structural context) 

 

In particular, I contend that there is a generally stable effect of recency, in that forms that were 

recently encountered influence behavior more than those not recently encountered, but this 
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general effect is mediated by processing differences caused by the different structural 

configurations in which primes can appear. This leads to the hypothesis best captured by the 

RECENT INTERACTION WITH CONTEXT EFFECT  hypothesis of language processing: 

Recent Interaction with Context Effect (RICE) 

The effect of a recently-encountered linguistic form on subsequent behavior is 

mediated by the way its structural context was processed. 

 

In making this hypothesis, I focus on how the processing of a structural context mediates the 

effects of recency. As noted above, recency is a well-known predictor of a form’s likelihood to 

influence subsequent linguistic behavior. Forms that have occurred recently are more likely to 

affect behavior than those that have not occurred recently. However, the way a sentences is 

processed (as is discussed in Chapter 2) affects the way linguistic forms (e.g. words and the rules 

that combine them to form grammatical units) are retrieved and unified. This, in turn, affects the 

accessibility of particular forms during subsequent processing tasks.  

 The claim that the structural context of a prime may affect subsequent behavior raises 

several important questions such as  

(i) Does structural context affect the retrieval of both lexical and structural 

information similarly?  

 

(ii) What should count as a relevant structural context (e.g. linear position or 

hierarchical position)? 

 

and the closely-related question  

 

(iii) Which contexts facilitate and which inhibit various linguistic behaviors? 

 

The short answer to (i) is that the aforementioned research shows that the accessibility of 

semantic information may be enhanced by features of the structural context. However, whether 
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structural contexts also affect the way specific word forms or syntactic patterns influence 

subsequent performance is unknown. The short answer to (ii) and to (iii) is that we don’t know 

for sure, but we have a potential starting point. Previous work in historical linguistics, language 

modeling, and theoretical linguistics suggest that matrix and embedded positions are different 

and that this distinction may be useful to begin our exploration for the relevant contexts 

(Lightfoot 1991, Pearl 2005, Pearl & Weinberg 2007, Pintzuk 1999, Pintzuk & Taylor 2006, 

Stockwell & Minkova 1991). For example, Lightfoot (1991) and Pearl and Weinberg (2007) 

argue that linguistic forms occurring in embedded VPs are not informative to language learners 

and that forms occurring in matrix clauses are privileged. Likewise, Pintzuk (1999) found that 

matrix and embedded positions show different patterns of language change, namely that matrix 

clauses make greater use of innovative forms than embedded ones. This suggests that clausal 

boundaries and hierarchical patterns may mediate the subsequent use of linguistic forms.  

However, it is not perfectly clear why embedding should affect the accessibility of 

linguistic forms. Furthermore, various forms of embedding  may have different effects on 

processing. Previous research in both comprehension and production have found differences 

between the processing of relative clauses and both the internal complements of nouns 

(henceforth noun complement clauses) and the internal complements of verbs (henceforth verb 

complement clauses) (e.g. Boland 2005; Chambers, Tanenhaus, & Magnuson 2004; Clifton 

Speer, & Abney 1991; Gibson 1998, 2000, 2003; Gibson, Desmet, Grodner, Watson & Ko 2005; 

Grodner & Gibson 2005; Hudgins & Cullinan 1978; Kennison 2002; McElree & Griffith 1995; 

Shaprio, Oster, Garcia, Massey, & Thompson 1992;  Trueswell, Tanenhaus, & Garnsey 1994; 
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Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy 1995; van Gompel, Pickering, & Traxler 

2001; Watson, Breen, & Gibson 2006; Watson & Gibson 2004) as well as for relative clauses 

and adverbial clauses (e.g. Gayraud & Martinie 2008). This research suggests that relative 

clauses are generally more difficult to comprehend than noun or verb complement clauses and 

that relative clauses are more integrated with other elements of the sentence than adverbial 

clauses. Given these findings, it may not be simply a matter of embedding that affects 

accessibility but also the form of embedding. 

The possible answers to questions about the relevant contexts and their possible effects are 

profuse. In order to limit the number of questions, in this dissertation, I focus on how elements of 

the structural context mediate the effects of recency by decreasing the likelihood of priming. In 

particular, I explore how the processing of different structural contexts (e.g. matrix clauses and 

relative clauses) affects the priming behavior of linguistic forms that appear within them.
1
 

To further limit the scope of this dissertation, I explore the effects of structural context on 

priming only on lexical items (lexical priming) and sentence structures (structural priming). One 

reason for exploring these two types of priming is that reactivating a specific lexical item or 

syntactic structure may be different from reactivating a semantic referent, as explored in the 

focus research mentioned above (Almor 1999; Almor & Eimas 2008; Birch, Albrecht & Myers 

2000; Birch & Garnsey 1995; Foraker & McElree 2007; Morris & Folk 1998). These three types 

of reactivation occur at different levels of language processing, with the activation of a referent 

occurring at the conceptual level, a word occurring at the lexical level, and a syntactic form 

occurring at the combinatorial level.  

                                                 
1
 I do not consider non-structural forms of context, such as discourse-level information structure. 
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 The studies that I present in Chapters 3 and 4 support the RICE hypothesis. I demonstrate 

that primes occurring within certain structural contexts have less of an effect on subsequent 

production than primes occurring in other structural contexts. In Chapter 3, I show that lexical 

primes in noun complement clauses show less priming than those occurring in verb complement 

clauses, relative clauses, or matrix clauses. For example, the bolded word in (5) facilitates 

response time at the target word (italicized) less than the same word in the other structural 

contexts ((6) – (8)). 

(5) Prime in the internal complement of a noun (noun complement clause) 

The manager reported the fact that the secretary bought the supplies for the owner. 

        Target: bought 

 

(6) Prime in the internal complement of a verb (verb complement clause) 

The manager reported that the secretary bought the supplies for the owner. 

       Target: bought 

 

(7) Prime in a relative clause 

The manager liked the secretary who bought the supplies for the owner. 

        Target: bought 

 

(8) Prime in a matrix clause 

The manager left the request, and the secretary bought the supplies for the owner. 

        Target: bought 

 

In Chapter 4, I show that structural primes occurring in verb complement clauses show less 

priming than those occurring in relative clauses or matrix positions. For example, the bolded 

double object form of the dative alternation
1
 in (9) is less likely to be repeated in subsequent 

productions than the same construction in sentences (10) – (12).  

                                                 
1
 The dative alternation is the variable ordering of objects following dative verbs such as give, hand, show, and buy. 

The two alternates are the double object form “promised the duchess the rubies” and the prepositional dative form 

“promised the rubies to the duchess.” 
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(9) Prime form in the internal complement of a verb (verb complement clause) 

The report declared the fact that the duke promised the duchess the rubies. 

 

(10) Prime form in a matrix clause preceded by and adverbial clause 

As report declared, the duke promised the duchess the rubies. 

 

(11) Prime form in a matrix clause with subject-modifying relative clause 

The duke who liked the king promised the duchess the rubies. 

 

(12) Prime form in relative clause 

The king liked the duke who promised the duchess the rubies. 

  

The structure of the dissertation is as follows. In Chapter 2, I present the motivation for the 

RICE hypothesis as well as introduce the model of memory and language processing from which 

the predictions I explore in Chapter 3 and 4 are derived. Chapters 3 and 4 present studies that test 

the predictions of the model that I present in Chapter 2 for lexical priming and structural priming 

respectively. Chapter 5 contains a discussion of the overall results and future avenues of 

exploration.   
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2 CHAPTER  

 

The Importance of RICE 

Active Evil is better than Passive Good. ~ William Blake  

 

The RICE hypothesis contends that subsequent use of linguistic form is affected both by when a 

linguistic form was previously processed (henceforth recency) and by how it was processed in 

relation to the larger structural context in which it occurred (henceforth structural context). In 

particular, RICE states that recently encountered forms influence subsequent performance but 

that this tendency is mediated by the structural context in which the form occurred during the 

recent processing.  

Recent Interaction with Context Effect (RICE) 

The effect of a recently-encountered linguistic form on subsequent behavior is 

mediated by the way its structural context was processed. 

 

In the current chapter, I present evidence—both theoretical and behavioral—that offers support 

for the general claims that both recency and structural context affect subsequent linguistic 

behavior (section 1). In section 2, I argue for the union of research on the effects of recency and 

structural context under RICE. In section 3, I present the components of the model of memory I 

use throughout the current work. In this section, I further develop the RICE hypothesis and its 

predictions about structural contexts and their effects, given the model presented in section 3. 

Section 4 concludes with a summary of the chapter and a comparison of the RICE hypothesis 

and the standard account of priming. 
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1. The effects of recency and structural context on linguistic behavior 

A commonly made observation is that linguistic forms that were recently encountered are likely 

to be reused or to reoccur. This tendency can be found at all levels of language processing, from 

sounds, to words, to sentence types. For example, Levelt and Kelter (1982) found that speakers 

tend to reuse the words and patterns of their interlocutors. When speakers in their study heard a 

question such as “At what time do you close?,” they were more likely to say “At five-o’clock” 

than if they had first been asked “What time does your store close?” The speakers in the study 

used the same pattern (i.e. the prepositional phrase “at . . .”) as the one they recently 

encountered. Levelt and Kelter explained this behavior as a form of word-matching. Others have 

built on this finding and contend that it is not just a matter of reusing the same words but also 

reusing the same syntactic structures independent of particular words (e.g. Bock 1986b). This 

sort of matching behavior may arise for a multitude of reasons, ranging from establishing 

common ground, to aligning discourse and coordinating interlocutors, or even to preserving 

registers (e.g. Garrod & Anderson 1987, Tannen, 1987, Weiner & Labov 1983). It may be a form 

of implicit learning or a source of language change (Bock & Kroch 1989; Bock & Griffin 2000; 

Ferreira & Bock 2006; Jäger & Rosenbach 2008a, b).  

 Although many explanations for such behavior have been put forth, there is one common 

assumption about it: recent processing of a linguistic form prepares, or primes, the processor to 

reuse it. That is, the processing of a form facilitates the subsequent processing of the same or a 

similar form. McNamara (2005) defines such facilitation as PRIMING, “an improvement in 
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performance in a perceptual or cognitive task, relative to an appropriate baseline, produced by 

context or prior experience” (p 3). Prior experience can refer, for example, to the number of 

times a person has encountered a particular word throughout his or her life or to how recently a 

person encountered a particular word. The effects of frequency and recency have been noted by 

numerous studies, and they both can affect the way words are understood and sentences are 

parsed (e.g. MacDonald, Just, & Carpenter 1992; McKoon & Ratcliff 1998; Trueswell, 

Tanenhaus, & Garnsey 1994). The RICE hypothesis is primarily concerned with recency and its 

effects on subsequent reuse of a linguistic form.  

 Although the RECENCY EFFECT (i.e. the tendency of recently processed linguistic forms to 

facilitate subsequent behavior) is a crucial factor for priming, it is not specific to linguistic 

performance. Recency effects have been noted by cognitive psychologists for decades. Language 

users tend to retrieve items at the end of word lists more quickly and more reliably during free 

recall tasks than items in other parts of word lists (e.g. Bjork & Whitten 1974; Deese & Kaufman 

1957; Murdock 1962; Davelaar, Goshen-Gottstein, Haarmann, Ashkenazi, & Usher 2005; 

Howard & Kahana 1999). Since the early days of this line of research, theorists have argued that 

recency effects arise because particular words or syntactic patterns are still active in memory. In 

other words, the memory (conscious or unconscious) of the encounter is still accessible (e.g. 

Atkinson & Shiffrin 1971).  

 Outside of word-list recall, recency effects can be found in facilitated response times to 

categorization tasks, lexical decisions, item recognition, pronunciation tasks, and sentence 

completion tasks (Bock 1986a, b; McNamara 1992, 2005; Rips, Shoben, & Smith 1973 inter 
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alia). Processing a word can facilitate the processing of the same word (e.g. Perea & Rosa 2002), 

a rhyming word (e.g. Meyer, Schvaneveldt, & Ruddy 1974), a morphologically similar word 

(e.g. Plaut & Gonnerman 2000, Veríssimo & Clahsen 2009), or an associatively or semantically 

related word (e.g. Forster 1981; McKoon & Ratcliff 1992; McNamara 2005; Perea & Rosa 2002; 

Ratcliff & McKoon 1994; Wang, Dong, Ren, & Yang 2009). For example, processing a 

structural form (e.g. the passive construction “The house was struck by lightning”) can facilitate 

the reuse of the same construction (e.g. Bock & Loebell 1990, Pickering & Ferreira 2008, 

Weiner & Labov 1983).  

 Three commonly studied forms of priming (Bock 1986; Branigan, Pickering, Liversedge, 

Stewart, & Urbach 1995; Estival 1985; Jaeger & Snider 2008; Pickering & Ferreira 2008; Snider 

2008) include:
1
 

• LEXICAL PRIMING (e.g. ‘identity’ or ‘repetition’ priming): facilitation in the processing of 

a lemma or lexeme due to the recent processing of the same lemma or lexeme (Chapter 3) 

 

• SEMANTIC PRIMING (both ‘associative’ and ‘semantic’): facilitation in the processing of a 

word due to the recent processing of a related word (Chapter 3) 

 

• STRUCTURAL PRIMING (sometimes called SYNTACTIC PRIMING or STRUCTURAL 

PERSISTENCE): facilitation in the use of a syntactic form due to the recent processing of 

the form (Chapter 4) 

 

Each of these types of priming focuses on a different level of language processing, but each of 

them reaches a similar conclusion: recency matters. 

 This leads to the question of why recency matters. As mentioned previously with respect 

to list learning, the claim is that forms that have occurred recently are easier to recall because 

                                                 
1
 Phonological priming is not considered in the present work. 
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they are still ‘salient’ or ‘active’ in memory. However, there is evidence that suggests that more 

than just recency affects a form’s saliency or activation. The structural context in which the form 

occurred also matters (henceforth the STRUCTURAL CONTEXT EFFECT). Previous research has 

found that elements of the structural context can serve to heighten a form’s activation making it 

easier to retrieve and, hence, more likely to facilitate subsequent behavior (Birch & Garnsey 

1995; Clifton, Kennison, & Albrecht 1997; McKoon, Ratcliff, Ward, & Sproat 1993; Nicol & 

Swinney 1989; Spivey, Tanenhaus, Eberhard, & Sedivy 2002; Sturt 2003; Swinney 1979; van 

Berkum, Brown, & Hagoort 1999). For example, research on focus constructions, such as it-

clefts (as in (1)) and wh-clefts (as in (2)), has found that words in focus positions (the bolded 

expressions below) lead to greater facilitation at the target word (i.e. the subject of the 

continuation sentence in italics below) than words in ‘deemphasized’ positions, i.e. 

words/phrases in structurally subordinated, pragmatically backgrounded positions in cleft 

sentences, such as the italicized words in (1) and (2)
1
 (Almor 1999).  

(1) It-cleft sentence  
 It was the robin that ate the apple.  

  

 Continuation: The bird/The fruit… 

 

(2) Wh-cleft sentence 
 What the robin ate was the apple.  

 

Continuation: The bird/The fruit… 

 

 

Had recency been the only factor affecting the speed at which speakers responded to the noun-

phrase anaphors, then “the robin” in (1) and (2) should have facilitated responses to “the bird” 

                                                 
1
 The term ‘deemphasized’ or ‘defocused’ has been used to describe the non-clefted  information (Birch, Albrecht, 

& Myers 2000). 
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equally. Likewise, the “the apple” in (1) and (2) should have facilitated responses to “the fruit” 

equally. However, there was a difference: primes in focus positions facilitated processing more 

than those in deemphasized positions. In other words, “the robin” in the focus position in the it-

clause (1) facilitated responses to “the bird” more than “the robin” in the deemphasized position 

in the wh-clause (2). Henceforth, I refer to this facilitation for items in focus positions the FOCUS 

EFFECT. Other studies have also found focus-position effects for performance differences in tasks 

ranging from lexical decisions to story continuations (Almor & Eimas 2008; Birch, Albrecht, & 

Myers 2000; Birch & Garnsey 1995; Foraker & McElree 2007; Morris & Folk 1998). The 

boosted activation of a linguistic expression that appears in a focus position makes that 

linguistics expression easier to locate or reactivate when a semantically related expression (e.g. a 

coreferential pronoun) is subsequently processed. 

 However, there are notable exceptions to the focus effect. For example, Birch, Albrecht, 

and Meyers (2000) found that forms in focus positions (e.g. (3)) were not recognized any faster 

than those in neutral positions (e.g. (4)), indicating that focus position in and of itself may not 

affect the retrievability of specific words.  

(3) Antecedent in focus position 

It was the mayor who refused to answer a reporter’s question. 

 

(4) Antecedent in neutral position 

The mayor refused to answer a reporter’s question. 

 

However, they did find that linguistic expressions presented in focus positions showed greater 

long-term effects than those in either neutral or deemphasized positions. These findings suggest 
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that focus effects may arise only after a delay and that they may be sensitive to pragmatic and 

task demands.  

 Almor and Eimas (2008) also found that focus effects are not as consistent or as stable as 

previously assumed. They found that focus effects can disappear depending on the task one is 

using. Using both repeated noun-phrase anaphors (i.e. the antecedent and the noun-phrase target 

were the exact same phrase as in (5)) and non-repeated noun-phrase anaphor (as in (6)), they 

tested the effects of focus constructions in both an auditory lexical decision task and a recall task.  

(5) Repeated noun-phrase anaphor 
It was the bird that ate the apple. The bird seemed very satisfied. 

 

(6) Non-repeated noun-phrase anaphor 
It was the robin that ate the apple. The bird seemed very satisfied. 

 

They found facilitation for focus constructions in the lexical decision task, regardless of whether 

the noun-phrase anaphor was a repeated phrase or a non-repeated phrase. However, they suggest 

that there may also have been a first-mention effect aiding in the lexical decision. In the recall 

task, they found no effect of focus position for either repeated or non-repeated noun-phrases, 

though they did find that repeated noun-phrases led to worse recall overall. They argue that, 

although there may be facilitation for reading times or lexical decisions at the noun-phrase 

anaphor following focus constructions, recall and long-term representations of the antecedent are 

not affected by whether the antecedent occurred in focus position or deemphasized position. 

They state that “focus only affects memory under conditions which are not typical of regular 

discourse” (e.g. when the anaphor is the exact same phrase as the antecedent rather than a 

pronoun or other expression) (p 222).  
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 What we can take away from the above work on focus constructions is that being in a 

focus position facilitates performance in some tasks relative to being in a deemphasized position. 

Other structural contexts, such as different forms of embedding, may affect behavior in radically 

different ways.  

 

2. Why we need RICE  

Previous work on recency effects and structural context effects suggest that the processing of a 

linguistic form influences subsequent use of that form. Firstly, if a form has been recently 

encountered, it is more likely to reoccur or to be responded to more quickly than if it hadn’t 

occurred recently. Secondly, if a form occurs in some structural configurations such as the focus 

position of a focus construction, subsequent behavior with the form may also be facilitated. 

However, these two lines of research have not been integrated. As a consequence, we do not 

have a complete picture of how the processing of a linguistic form affects subsequent linguistic 

behavior. Work that explores recency effects often does not manipulate the structural context in 

which the prime forms occur. At the same time, work on structural context effects does not 

manipulate recency. 

 At the end of the day, all we really have is an indication that recent processing or being in 

certain structural contexts aids in subsequent processing, and we are left with unanswered 

questions, such as 

(i) Does the processing of a structural context affect different types of priming in the same 

way, meaning that if the structural context aids in lexical priming does it also aid in 

structural priming?  

and 
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(ii) Which structural contexts facilitate priming and which structural contexts inhibit 

priming? 

 

The studies presented in Chapters 3 and 4 address these questions and explore the following 

hypothesis: 

Recent Interaction with Context Effect (RICE) 

The effect of a recently-encountered linguistic form on subsequent behavior is 

mediated by the way its structural context was processed 

 

The RICE hypothesis states that structural configurations create patterns of word retrieval and 

integration. Differences in these patterns of retrieval and integration affect the subsequent 

accessibility of memories for particular forms that appear within those structural configurations. 

Differences in subsequent behavior/performance with a form arise due to differences in the 

levels of accessibility, which are ultimately affected by the way memory encodes and retrieves 

processing events. Before demonstrating how structural context may mediate the general 

facilitating effects of recent priming, I present the model of language processing and memory 

from which RICE is derived. In section 3, I cover some of the basic components of activation-

based models of language processing. After presenting this, I demonstrate how these elements 

interact to affect linguistic behavior. 

 

3. Memory 

One of the most common assumptions theorists and researchers have about memory is that it has 

a limited processing capacity but virtually limitless storage capacity. Although we can store a 

life’s worth of memories, we can consciously access or use only a finite set of memories at any 
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particular time (Miller 1956). These limitations have led to a distinction between the aspects of 

memory that are more long-lasting and harder or slower to retrieve (i.e. LONG-TERM MEMORY, 

LTM) and those that are more fleeting and easier or quicker to manipulate. This second aspect of 

memory is often referred to as SHORT-TERM MEMORY (STM) or WORKING MEMORY (WM) (e.g. 

Allen & Baddeley 2009; Baddeley 1986, 1992; Baddeley & Hitch 1974; Baddeley & Logie 

1999; Becker 1994; Cowan 1999, 2001; Ericsson & Kintsch 1995; Halford, Wilson, & Phillips 

1998; Hitch & Logie 1996; Just & Carpenter 1992; Just, Carpenter, & Keller 1996; King & Just 

1991; Lewis 1996; Miyake & Shah 1999; see Cowan, Nelson, & Chen 2009 for a dissenting 

opinion about the distinction). For ease of discussion and because terms such as ‘working 

memory’ and ‘long-term memory’ are so ubiquitous, I use these terms to refer to the memories 

that are limited in number and currently active or in use (working memory, WM) and those that 

may be unlimited in number but are not currently active or in use (long-term memory, LTM).  

3.1 Activation-based models of memory and language processing and priming 

 The model of language processing that I present in this section adopts many of the 

features and assumptions of activation-based processing models. This set of models assumes that 

because cognitive resources in WM are limited, WM cannot search LTM exhaustively. Rather, it 

relies on the relative activation of forms (e.g. linguistic forms) in LTM during processing 

(Collins & Loftus 1975; Dell, Chang, & Griffin 1999; Elman 1990, 1991; Garrett 1982, 1988; 

Kintsch 1988a,b; Levelt 1989). In these models, each linguistic form has an associated record of 

its history of use, called its ACTIVATION WEIGHT. This weight helps determine how easily a form 

is retrieved or how likely a form is to be retrieved. As the use of a form increases in frequency 
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(e.g. the form is repeatedly retrieved), its resting activation, or BASE LEVEL ACTIVATION, weight 

increases. This gradual accrual of weight accounts for phenomena such as frequency effects (e.g. 

more frequent words are processed more quickly than less frequent words) and long-term 

learning effects. Retrieval also has short-term effects on a form’s activation weight. After being 

retrieved from memory, the form’s activation weight increases momentarily. This activation can 

then spread from the specific form to related forms through a process called SPREADING 

ACTIVATION, or cascading activation (Collins & Loftus 1975, Dell 1986, Dell & Gordon 2003, 

Rapp & Goldrick 2000).   

 For instance, assume memory contains representations for the semantic, lexical, and 

phonetic information of words (represented below in Figure 2.1 as the ‘semantic features,’ 

‘lexeme,’ and ‘phonological’ levels). Each node connects to many other nodes, and the same 

node can be shared by different words. Consider the small network below with its various nodes. 

Figure 2.1: Representations of linguistic forms in memory 

hat cat dog

PETCANINECLOTHING
Semantic 

features

Lexeme

Phonogical

 
Here we see that both cat and dog link to the semantic node for PET, but only dog links to 

CANINE. Similarly, both cat and hat link to the phonological node /t/, but only cat links to /k/. 
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During the processing of “Sophia is my tabby cat,” the word cat is retrieved. This retrieval 

activates the cat node (lexeme level)
1
 along with its phonological and semantic units, as denoted 

by the bolded lines in Figure 2.2 below. 

Figure 2.2: The activation of cat 

hat cat dog

Semantic 

features

Lexeme

Phonological

PETCANINECLOTHING

 

In this figure, the nodes are connected to one another in a complex network with nodes at one 

level connecting to multiple nodes at other levels. The activation of one of these nodes spreads to 

the other connected nodes to which they are connected. These connected nodes receive a slight 

boost in their activation, as denoted in Figure 2.3 by the lesser-bolded lines and circles.  

 

                                                 
1
 The lexeme level refers to the level that contains the abstract unit for a word, e.g. WALK, that corresponds to the set 

of possible forms of a word, e.g. walk, walked, walks, which count as the lemma for the lexeme. 
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Figure 2.3: Spreading activation from cat 

hat cat dog

Semantic 

features

Lexeme

Phonological

PETCANINECLOTHING

 

The activation of the word cat activates its associated semantic information (e.g. PET). Now that 

PET is active, other nodes that are connected to PET, e.g. dog, receive a slight increase in their 

activation. Subsequently, words that are connected to the retrieved word—either semantically or 

phonologically—show greater facilitation due to the slight increase in their activation. However, 

this activation boost (for both the retrieved form and the forms connected to it) wanes.  

 One important element of the type of model I am adopting is that the different levels of 

processing are connected and can, therefore, inform one another, but they are not fully dependent 

on each other. They do not need process information in lockstep (Allen & Badecker 1999, 2000; 

Dell 1986; Rapp & Goldrick 2000, 2004, inter alia). Processing that occurs at one level can 

proceed before the processing at another level is complete (e.g. Bock & Levelt 1994, Ferreira 

2000, Ferreira & Swets 2002, Ferreira & Slevc 2007, Kempen & Hoenkamp 1987, Levelt 1989, 

Smith & Wheeldon 1999). For example, phonological encoding can begin before a sentence has 

been fully syntactically processed. These different levels of processing not only proceed 
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independently but also have independent effects as demonstrated by various speech errors (e.g. 

Dell 1986) and the independence of lexical and structural priming (e.g. Bock & Loebell 1990, 

Pickering & Branigan 1998). In this dissertation, I focus strictly on processing at the syntactic 

level and how type of processing affects the reuse of linguistic forms. 

 In addition to assuming separate levels of processing, activation-based models also 

assume that retrieved linguistic forms begin to deactivate soon after the processor has used them. 

This deactivation, or DECAY, of the memory trace occurs at a constant function leading to an 

exponential rate of decrease. As a form’s activation boost decays and its weight moves back 

towards its initial state, its influence on subsequent linguistic performance decreases. Activation-

based models use this pattern of activation, spread, and decay to explain linguistic behavior, such 

as priming. Because activation and decay are sensitive to time, priming behavior in such models 

is also sensitive to time, such that recently occurring forms are likely to exert more influence on 

behavior than other, comparable forms (e.g. Plaut & Gonnerman 2000; Seidenberg & 

McClelland 1989; Spivey 2007). Even models that focus on the long-term effects of priming 

(e.g. Chang 2008; Chang, Dell, & Bock 2006; Chang, Dell, Bock, & Griffin 2000) would allow 

for the most recent processing event to exert additional influence on subsequent performance 

(Kaschak 2007). 

Although activation is key for the model of language processing I am adopting in this 

dissertation, other components of the model also play a role in explaining priming behavior. I 

now turn to these other components and their role in priming behavior.  
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3.2 Buffers 

 A major component of the language processing model that I am adopting in this 

dissertation is the BUFFER SYSTEM, which serves as the interface between LTM and WM. For 

processing to occur, WM and LTM need to interact. WM needs to be able to access and 

manipulate the content of LTM. The content of LTM needs to be able to acquire new memories 

and update the representations of old memories. The buffer system is where the interaction 

between LTM and WM takes place. Baddeley and Hitch (1974) proposed a model of memory 

consisting of a CENTRAL EXECUTIVE, which manages the flow of information, and subsidiary 

SLAVE SYSTEMS that hold the information for the central executive to exploit, as shown below in 

Figure 2.4.  

Figure 2.4: Baddeley & Hitch (1974) model of working memory 

 

 

These slave systems are temporary stores for particular types of information and act as short-

term buffers for various types of information (Baddeley 2000):  

• PHONOLOGICAL LOOP: stores phonological information such as the linear order of 

sounds in a speech stream 

 

Central Executive

Phonological 

Loop

Visuospatial

Sketchpad 

Episodic 

Buffer



45 

 

• VISUOSPATIAL SKETCHPAD: stores visual and spatial information such as shapes 

and their location in the environment 

 

• EPISODIC BUFFER: stores episodic information such as the temporal ordering of 

events  

 

These buffers take input from the environment and hold it long enough for the central executive 

to integrate and manipulate it.  

Baddeley and Hitch’s concept of buffers has been integrated into several different models 

of memory. For example, Anderson (1993) uses a similar system of buffers in his ACTIVE 

CONTROL THOUGHT-RATIONAL (ACT-R) model, a general model of human cognition that 

accounts for behaviors ranging from language processing to arithmetic (Anderson 1993, 2005; 

Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin 2004; Anderson, Budiu, & Reder 2001; 

Anderson & Lebiere 1998; Anderson, Reder, & Lebiere 1996; Anderson, Lebiere, Lovett, & 

Reder 1998; Anderson &  Schuun 2000; Lebiere & Anderson  1998; Lewis & Vasishth 2005; 

Lewis, Vasishth, & Van Dyke 2006; Matessa 2001; Matessa & Anderson 2000; Reitter 2008). In 

ACT-R models, cognitive processes, such as language processing, are treated as “a series of 

skilled associative memory retrievals modulated by similarity-based interference and fluctuating 

activation” (Lewis & Vasishth 2005, p 375). In other words, all cognitive behaviors depend on 

the ability to retrieve and combine memories based on previous experience in similar situations. 

This ability is modulated by interference from similar memories and the waxing and waning of 

activation (as discussed in the previous section and in section 3.3.2 to come). ACT-R, like the 

aforementioned models of language processing, assumes that processing is affected by the 

activation of forms and their interactions with the activations of other forms. In one of the 
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earliest versions of ACT-R, Anderson and Pirolli (1984) demonstrate its spreading activation 

architecture, and this architecture persist through subsequent versions of ACT-R as demonstrated 

by the equations used to estimate forms’ activation (section 3.3.2). According to an ACT-R type 

model, if the processor is generating a sentence, it needs to retrieve specific words and combine 

them into grammatical patterns that conform to previously encountered grammatical patterns. 

The processor uses buffers as temporary stores for this information.  

 I adopt the following buffers from ACT-R (Anderson 1993):  

(i)  the CONTROL STATE BUFFER, which tracks the overall goal of the task (e.g. ‘process 

sentence’);  

 

(ii)  the current goal or PROBLEM STATE BUFFER, which holds the particular subgoal being 

addressed (e.g. ‘process determiner phrase (DP)’ or ‘process verb phrase (VP)’); and  

 

(iii) the RETRIEVAL BUFFER, which refers to the buffer that holds whatever particular word is 

involved with the current goal state. This buffer could also be empty depending on 

whether a word has been retrieved recently or not.  

 

 

In my model, I exploit these buffers to demonstrate the interactions among linguistic forms and 

the goals of language processing. Figure 2.5 presents the buffer system that I adopt in this 

dissertation. 
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Figure 2.5: Buffer system 

 

 

 

In my model along with Anderson’s (1993) ACT-R model, the control state buffer is connected 

to the problem state buffer. These two buffers feed information to one another. The retrieval 

buffer holds any recently retrieved declarative chunk (as defined below). Both the retrieval 

buffer and the problem state buffer are connected to a work area (i.e. the box that contains 

“Matching� Selection� Execution”) that evaluates the needs of the current processing state 

based on the contents of the problem state buffer and the retrieval buffer. This work area allows 

the processor to determine how best to resolve the current problem through a process of 

matching, selecting, and executing production rules (section 3.3.2 below). To understand how 

linguistic information in LTM interacts with the buffer system, we first need to understand how 

this information is represented in memory. 

3.3 Representations of knowledge in memory 

 Two types of knowledge are commonly distinguished: DECLARATIVE and PROCEDURAL 
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knowledge.
1
 DECLARATIVE KNOWLEDGE contains the facts we know, such as the meaning of the 

word sage. These memories can be learned explicitly and are represented as DECLARATIVE 

CHUNKS, sets of feature-value pairs. For example, a declarative chunk corresponding to the word 

sage may have the following representation: 

Sage Chunk 

isa : noun 

orth : sage 

semantic : spice 

 

This chunk contains the feature-value pair of ‘isa : noun’  (meaning “is a noun”).The chunk also 

contains the feature-value pair ‘semantic : spice.’ This feature-value pair provides the conceptual 

information, e.g. a word’s semantic classification. There may be other semantic features that are 

also represented in a chunk’s feature-value pairs.  

PROCEDURAL KNOWLEDGE, on the other hand, is the knowledge necessary for performing 

actions, such as linguistic structure building (e.g. building a determiner phrase) or riding a 

bicycle. In ACT-R-inspired models, this knowledge is represented as a series of PRODUCTION 

RULES. These production rules take the form of condition-action units or IF-THEN statements 

that specify goals, change buffer states, and often lead to the creation of new subgoals. To 

illustrate, a production rule for retrieving a DP might have the following form: 

IF the goal is to build a DP and no determiner has been selected 

THEN retrieve a determiner phrase from LTM. 

 Both declarative knowledge and procedural knowledge feed into the buffer system 

                                                 
1
 For the current discussion, I again borrow from Anderson’s ACT-R model (1993, 2005), as it is useful in 

subsequent discussions about language processing. 
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presented in Figure 2.5, as amended below in Figure 2.6 

Figure 2.6: Revised buffer system 

. 

  

One good reason for keeping the distinction between declarative and procedural knowledge clear 

is that there is neuropsychological evidence for a distinction between declarative knowledge and 

procedural knowledge (Ogawa, Inui, & Ohba 2008; Ullman 2001, 2004; Ullman, Corkin, 

Coppola, Hickok, Growdon, Koroshetz, & Pinker 1997; Stowe, Broere, Paans, Wijers, Mulder, 

Vaalburg, & Zwarts 1998).  

  3.3.1 A closer look at chunks and rules 

 Declarative chunks:  As mentioned above, the representations of declarative memories 

are called chunks. These chunks are sets of feature-value pairs. The feature-value pairs express 

information such as whether the form takes an argument and of what type or any other features 

necessary for case and agreement (Lewis & Vasishth 2005). For example, consider the following 
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six chunks.
1
 

 

Chunk 1 

  

Chunk 2 

  

Chunk 3 
isa    : DP 

case  : nom 

num  : sg 

orth  : the 

comp : =NP 

 

 isa    : NP 

case  : nom 

num  : sg 

orth  : duke 

 isa    : NP 

case  : acc 

num  : pl 

orth  : rubies 

Chunk 4  Chunk 5  Chunk 6 

isa   : S 

num  : pl 

spec  : =DP 

comp : =VP 

tense  : past/pres 

finite : finite 

 

 isa : AdjP 

orth  : nice 

mod : =NP 

    isa : RelC  

 num  : sg 

   spec: =RelP  

comp : =S-gap 

 mod : =NP 

 
 

 

These six chunks are sets of feature-value pairs. The feature-value pairs state the type of chunk 

(‘isa’ meaning “is a”) according to its syntactic category (e.g. ‘isa : S’ means “is an S(entence)-

chunk”) along with features relevant for  agreement (e.g. ‘num : sg’ means “number is 

singular”).
2
  Some of the above chunks also have open (unresolved) values, which act as place 

holders for values yet undefined.  For example, in the S-chunk (Chunk 4), there are two open 

values: ‘spec : =DP’ and ‘comp : =VP.’ Although these values are open, meaning that the 

specific content is not yet determined, there is information stating what the syntactic category of 

the complement should be (e.g. ‘VP’). The ‘=‘ denotes that the value is unspecified, and the XP 

following the ‘=‘ denotes the type of chunk whose values would satisfy the open value. Chunks 5 

                                                 
1
 All the additional chunks used in this and later chapters in the dissertation are in Appendix 2A both in their long 

forms and their abbreviated forms. 
2
 I adopt the use of features such as ‘comp’ and ‘spec’ from the work of Lewis & Vasishth (2005). Likewise, the use 

of agreement values, such as the feature-value pair in the S-chunk is inspired by Lewis & Vasishth (2005). 
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and 6 contain the feature ‘mod,’ which refers to the type of element they modify.
1
 These two 

chunks must modify nouns. However, other chunks (e.g. ‘isa : AdvP’) can modify VPs, Ss, or 

ADJs. Note that not all chunks have open values. Some chunks, e.g. the Chunks 2 and 3, have all 

the values of their feature-value pairs filled. I return to the importance of having filled (specified) 

or unfilled (unspecified) values in section 3.4 below.  

 According to ACT-R, there are two ways to add new chunks to long-term memory. They 

can either be learned explicitly or through the successful resolution of a problem. The first option 

is akin to memorizing multiplication tables or the names of children. The second is akin to 

solving an arithmetic problem or comprehending a novel sentence.  In the first case, the chunk is 

learned as a whole (e.g. memorizing the fact “9x3=27”) without having to make reference to the 

computations that lead to the solution. In the second case, the processor had to compute the 

solution using pre-existing templates or chunks and combining them, e.g. manipulating chunks 

for the numbers (i.e. 9 and 3) and the operations relevant to multiplication. For this type of 

processing, the processor needed to retrieve individual chunks, hold them in memory, integrate 

them, and reach an answer. The output of this process is then sent to LTM and becomes a 

declarative chunk that could be retrieved in whole during subsequent task that require the 

multiplication of 9 and 3. 

For the purposes of the current work, I focus on the second type of learning, namely the 

formation of new declarative chunks through the manipulation of independent, pre-existing 

chunks and the operations to combine them. During the processing of a sentence, the processor 

                                                 
1
 This ‘modification’ feature is inspired by Sag, Wasow, & Bender’s (2003) ‘mod’ feature and by Kromann’s (2004) 

use of an ‘amod’ feature. In both of these approaches, the features indicate the syntactic category of the form that an 

adjunct can modify. 
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must retrieve individual words and combine them, similar to how the processor needs to retrieve 

individual numbers to calculate a multiplication problem. After the sentence has been processed, 

it can be retrieved as a unit from memory. The assumption is that the processor solves problems 

(e.g. ‘process sentence’) by constructing novel phrases and clauses. These phrases and clauses 

use pre-existing linguistic forms (e.g. the words the and cat are combined to generate ‘the cat’) to 

generate new forms that can be used for subsequent processing. That is, the product of this 

processing (the new phrases or clauses) ultimately becomes a chunk that is itself retrievable as a 

whole. 

 Production rules:  Production rules, unlike declarative chunks, are not a collection of 

feature-value pairs. Rather, they take the form of condition-action units or IF-THEN statements 

that change goals (‘process sentence’� ‘process subject DP’), add chunks to buffers (‘retrieve 

DP-chunk’), and remove chunks from buffers (‘pop NP-chunk’) (Anderson & Schuun 2000). 

One can think of chunks as being the items in the buffers and of production rules as being the 

procedures that move the chunks through the buffers. When attempting to select a production 

rule in a given context, the processor first checks the buffers states against the IF parts of the 

possible rules. The processor calculates each rule’s strength, which is roughly its activation, and 

utility, which is how likely it is to satisfy the current goal minus the cost of applying the rule (see 

also section 3.3.2 below) (Anderson & Lebiere 1998).  

The use of production rules can be broken into three steps: the matching phase, the 

selection phase, and the execution phase as shown in Figure 2.6 repeated here:  
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Figure 2.6: Revised buffer system 

 

In this figure, we see that declarative knowledge is accessed via the retrieval buffer, and 

procedural knowledge is accessed via a work space joined to both the problem state buffer and 

the retrieval buffer. The MATCHING PHASE of this process refers to the process of checking the 

buffers (i.e. the problem state and retrieval buffers) and comparing them to the condition parts 

(IF statements) of each production rule. After the processor has matched the IF-statements to the 

current status of the buffers, it has a set of possible production rules to choose from. Each of 

these rules contains IF-statements that are true of the current state.
1
 During the SELECTION PHASE 

the processor compares the production rules in the set of production rules output by the matching 

phase and determines the utility of each rule. This step determines which production rules are 

most likely to satisfy the needs of the goal while incurring the least amount of cost (section 

3.3.2). During the EXECUTION PHASE, the processor deploys one of the rules that resulted from 

                                                 
1
 There is always a factor of random noise that could lead to imperfect matching. Ultimately, a rule that is not valid 

given the contents of the buffer or that does not satisfy the goals of the processor could be selected and fired due to 

this noise and, hence, lead to a potential error. However, I do not consider this factor in the current dissertation. 
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the selection phase, amends the buffers as determined by the rule, and tracks the success of the 

rule in achieving (or leading to the achievement of) a goal.  

For example, say the processor has checked the buffers and matched them to the 

following condition: 

IF the goal is to build a determiner phrase and the retrieval buffer is empty 

There may be multiple actions that could follow such as: 

THEN retrieve a DP headed by an indefinite article  

THEN retrieve a DP headed by an definite article 

THEN retrieve a proper name 

 The processor then selects among the rules (e.g. ‘if the goal is to build a subject phrase and the 

retrieval buffer is empty, then retrieve a definite determiner phrase’ versus ‘if the goal is to build 

a subject phrase and the retrieval buffer is empty, then retrieve an indefinite determiner phrase’). 

This selection process is affected by a number of factors including pragmatic pressures and the 

relative activation of the rules. The second of these is the primary focus of the current work and 

is explained in greater detail in section 3.3.2 below. Once a rule has been selected, it is executed 

(fired), and the processor notes whether it successfully satisfied the goal in the problem state 

buffer. 

In what follows, I focus on three general functions of production rules that arise in one 

fashion or another in various ACT-R models: retrieve, push, and pop.
1
   

(i) RETRIEVAL RULES find chunks in long-term memory and place them into the retrieval 

buffer.   

                                                 
1
 Different versions of ACT-R assume different numbers of rules. Still, there are a few common elements across the 

various ACT-R instantiations, and I refer to them as ‘retrieval,’ ‘push,’ and ‘pop’ rules.  
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(ii) PUSH RULES change the problem state by adding new subgoals.   

 

(iii) POP RULES remove chunks from the retrieval buffer.  

 

Let us consider, now, the actual form of three production rules: a retrieve rule, a push rule, and a 

pop rule.  

A retrieval rule checks the state of the retrieval buffer against the problem state buffer. If 

the retrieval buffer is empty and there is a current problem in the problem state that needs 

resolution, a retrieval rule fires to retrieves a chunk that may resolve the problem. The actual 

selection of one chunk in lieu of another depends on the chunks’ activation weights relative to 

one another and their overlap with the current needs of the processor (section 3.3.2).  Table 2.1 

contains an example of a ‘retrieve’ production rule.
1
 

Table 2.1: Production rule for retrieving a DP-chunk (‘retrieve’ rule) 

Syntax of Production Rule English Description 

(process-sentence=goal> 

     

      isa  : S 

    num  : sg 

    spec  : =DP 

    comp : =VP 

    tense  : past 

    finite : finite 

 

=retrieval> 

   isa : nil 

 

==> 

   +retrieval> 

     isa  : DP 

) 

Production rule to satisfy primary goal 

IF the goal chunk is  

    of the type sentence 

    and the sentence requires a singular subject 

    and it contains an open value for a  DP  

    and it contains a open value for a  VP  

    and the tense is past  

    and the form is finite 

 

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     request a retrieval   

     of a chunk that is of type DP 

 

                                                 
1
 The production rules for this dissertation along with their names (their ‘abbreviated forms’) are listed in Appendix 

2 B. 
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The left-hand column in the table above shows the production rule syntax, and the right-hand 

column contains its plain-language translation. This production rule matches the problem state 

buffer (the =goal> part of the statement) and the retrieval buffer (the =retrieval> part of the 

statement). Given the current state of these buffers along with the current goal (e.g. ‘process 

sentence’) and the utility of one rule over another (section 3.3.2), the processor selects a rule, 

which is then executed. In the current example, the problem state goal is to process a sentence 

and the retrieval buffer is empty. The processor matches these states to the IF part of the possible 

rules and selects the most appropriate one given the conditions in the IF part of the rule, in this 

case a ‘retrieve DP’ rule. For ease of future presentation, rules such as this are shown only in 

their abbreviated form, which refers to the THEN part of the statement. For instance, the 

example in Table 2.1 is henceforth ‘retrieve DP.’ 

 Table 2.2 contains the syntax for a push rule. Recall that push rules change the current 

problem state by taking chunks from the retrieval buffer and moving them to the problem state. 

A push rule fires when the chunk in the retrieval buffer contains one or more feature-value pairs 

that need to be resolved. For example, in Chunk 1 (repeated below), there is an open NP value. 

Chunk 1 
isa    : DP 

case  : nom 

num  : sg 

orth  : the 

comp : =NP 

 

Because the value of the comp feature is unspecified, the DP-chunk is incomplete, and its 

completion becomes a new subgoal. The DP-chunk is pushed into the problem state buffer, and 

its subgoal (i.e. ‘process NP’) is placed on the stack of subgoals. Each new subgoal is stacked on 

top of the last subgoal (Anderson & Douglass 2001). They must be resolved in reverse order, the 
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most recent one being resolved before the subgoal prior to it. In the syntax below, the push rule 

takes a DP-chunk with an open value (i.e. =NP) and places it in the problem state until its open 

values are satisfied. 

Table 2.2: Production rule for changing the probem state (‘push’ rule) 

Syntax of Production Rule English Description 

=goal> 

     isa  : S 

    num  : sg 

    spec  : =DP 

    comp : =VP 

    tense  : past 

    finite : finite 

     

=retrieval> 

    isa : DP 

    orth : the 

    comp : =NP 

 

==> 

    !push! 

     isa : DP 

     orth : the 

     comp : =NP 

IF the goal chunk is  

    of the type sentence 

    and the sentence requires a singular subject 

    and it contains an open value for a  DP  

    and it contains a open value for a  VP  

    and the tense is past  

    and the form is finite 

     

AND IF the retrieval buffer  

   currently contains an determiner phrase 

    and contains the as its head 

    and contains an open value for an NP 

 

THEN 

     push the current chunk into the problem state,  

     making a new subgoal 

 

Table 2.3 contains an example of a pop rule, in particular, the rule that would pop an NP-

chunk with no open values. Pop rules fire only when (i) there is a chunk in the retrieval buffer 

and (ii) this chunk has no open (unresolved) values. Pop rules take chunks from the retrieval 

buffer and send them to LTM. The particular pop-rule below removes an NP-chunk from the 

retrieval buffer. 
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 Table 2.3: Production rule for popping an NP-chunk (‘pop’ rule) 

Syntax of Production Rule English Description 

=goal> 

    isa : DP 

    orth : the 

    comp : =NP 

     

=retrieval> 

   orth : NP 

   head : noun 

 

==> 

    !pop! 
     isa : NP 

IF the goal chunk is  

    of the type determiner phrase 

    and contains the as its head 

    and contains an open value for an NP 

     

AND IF the retrieval buffer  

   currently contains an NP with no open values 

 

 

THEN 

     pop the contents of the retrieval buffer 

 

Here we see that when the item in the retrieval buffer has no open values, it does not need to be 

sent to the problem state and can, rather, be popped.  

The choice among the rules is affected by the state of the buffers, and the states of the 

buffers are affected by the outcomes of the fired production rules.  I now turn to how these 

production rules lead to changes in the buffers through the retrieval, pushing, and popping of 

chunks. Consider the diagram below. Here, we see that there is an initial goal in the control state 

buffer: ‘process sentence.’  

State of buffers 

 
 

Retrieval bufferProblem state

‘process sentence’

Control state
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The processor checks the state of the problem state and retrieval buffers and sees that there is 

nothing currently in either. Using this information, the processor compares the results of the 

buffer tests (i.e. ‘problem state and retrieval buffer = empty’) to the production rules in LTM and 

identifies production rules that contains IF statements matching the current state. From these, it 

selects the rule that both matches the conditions of the buffers and is most likely to achieve the 

goal in the control state ‘process sentence’ at the least cost. Following rule selection, the 

processor fires the rule. In this particular case, the processor has selected and fired a ‘retrieve S-

chunk’ rule and has placed the S-chunk into the retrieval buffer. From this point forward, we 

focus strictly on the contents of the problem state and retrieval buffer, so the control state buffer 

is no longer represented. We now keep track only of the contents of the problem state and 

retrieval buffers (left-hand column) and of the list of production rules used (right-hand column). 

State of buffers List of rules  

 

retrieve S-chunk 

 

The S-chunk currently in the retrieval buffer has two open values: spec (=DP) and comp 

(=VP). As such, the S-chunk is incomplete and cannot be popped from the retrieval buffer. The 

processor again checks the two buffers, notes the S-chunks open values, and executes a rule to 

push the chunk into the problem state buffer, thereby adding a goal (subgoal) to the problem 

state. 

  

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

 

The processor checks the two buffers again and notices that the problem state has open values 

(subgoals) and that the retrieval buffer is empty. Using this information, the processor matches 

the results of the buffer checks against the possible rules, selects a rule, and executes it. In this 

case, a DP-chunk is added to the retrieval buffer.  

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

 

Again, there is an open value in the chunk in the retrieval buffer, so the DP-chunk cannot be 

popped. The processor chooses a rule to push the chunk into the problem state buffer, adding yet 

another subgoal, i.e. to resolve (process) the open =NP. 

  

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

isa : DP

orth: the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

 

The processor notes that the current problem in the problem state is to resolve the open =NP and 

that there is currently nothing in the retrieval buffer, so it selects a production rule to retrieve an 

NP chunk. This rule fires, and an NP-chunk is selected and placed into the retrieval buffer. 

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

 

The NP-chunk has no open values, so the processor does not need to generate any new subgoals 

based on the features of the NP-chunk. The processor can release the chunk from the retrieval 

buffer using a pop rule. Pop rules can either affect the subgoal structure or not (Anderson & 

Lebiere 1998).
1
 If the pop rule affects the subgoal structure, the values of the popped form can be 

                                                 
1
 Anderson & Lebiere (1994) identify six different combinations push rules, pop rules, and goal modification. The 

two combinations that involve popping include ‘pop changed’ and ‘pop unchanged.’ The value popped by a ‘pop 

changed’ rule can be passed from a subgoal to a parent goal through the ‘subgoal return mechanism.’  

isa : DP

orth: the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

isa : NP

orth : duke

isa : DP

orth : the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state



62 

 

passed up through the subgoal structure to the next subgoal in the stack of goals. For our 

purposes, this means that the values of the popped declarative chunk can be unified with the 

open values in the top-most chunk in the problem state. UNIFICATION is an operation that merges 

the feature-value bundles of one form (e.g. the NP) with the open values of another form (e.g. the 

=NP of the DP), as is discussed in detail in section 3.4.1. The unification of values modifies the 

subgoal structure by satisfying subgoals in the problem state. To illustrate, consider the popping 

of the NP-duke-chunk. 

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 
 

 

In this case, the top-most chunk (the DP chunk) stacked in the problem state buffer contains an 

open =NP value. This open value serves as a subgoal, i.e. ‘process NP.’ The popped NP-chunk 

can satisfy this subgoal by unifying its values with the open =NP value.  This unification 

modifies the subgoal, as shown by the indexing below. 

  

isa : DP

orth : the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

isa : NP

orth : duke
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

 

The 1 denotes the values that are now shared between the popped NP-chunk and the previously 

open =NP values in the DP-chunk.  Specifically, the 1 indicates that the two values are in fact the 

same. I am using tags here in a similar fashion as unification-based approaches to grammar such 

as Sag, Wasow, & Bender (2003). In what follows, I show the chunks popped from the buffer 

system in the bottom right of each diagram to help us keep track of the various chunks that were 

used during the sentence’s processing. 

As processing proceeds, the chunk that results from one unification cycle can be 

incorporated into the next unification cycle. To clarify, consider the next step in the processing 

of our example above.   

The DP-chunk has no open values, so its conditions are satisfied, and the processor can 

pop it. 

  

isa : DP

orth : the

comp :      

Retrieval buffer

isa : S

spec : =DP

comp : =VP

Problem state

isa : NP

orth : duke1

1
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State of buffers List of rules  

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 
 

 

The popped DP matches open values (=DP) in the S-chunk, so the pop rule can modify the 

subgoal ‘process DP’ in the S-chunk. The processor pops the DP-chunk and modifies the goal by 

unifying the DP-chunk’s values and the open =DP value in the S-chunk.  The 2 denotes that the 

values are now shared between the popped DP-chunk and the previously open =DP value in the 

S-chunk. 

State of buffers List of rules  

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

 

However, there is still an open value in the S-chunk (i.e. =VP). Its conditions are not satisfied, so 

it cannot be popped from the retrieval buffer. The S-chunk stays in the problem state buffer. It 

cannot yet be removed from the stack of subgoals that must be satisfied before the sentence is 

fully processed.  

isa : DP

orth : the

comp :      

Retrieval buffer

isa : S

spec : =DP

comp : =VP

Problem state

isa : NP

orth : duke1

1

isa : DP

orth : the

comp :      

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

1
2

2

isa : NP

orth : duke1
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In this manner, subgoals are added to the problem state and resolved by chunks popped 

from the retrieval buffer, all in pursuit of the main goal ‘process sentence.’ Processing is 

complete only when no more subgoals remain in the problem state buffer (e.g. when the ‘spec : 

=DP’ and ‘comp : = VP’ for the S-chunk have been resolved) and the final chunk resolves the 

primary goal (e.g. a complete sentences satisfies the ‘process sentence’ goal in the control state 

buffer). To summarize the various rules and chunks used in the processing of the DP in the 

example above, consider Table 2.4 below. 

Table 2.4: Chunks and rules retrieved for processing a subject DP 

Retreived chunks List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

 

In the left-hand column, we see the three chunks that were initially stored in long-term memory 

(LTM) and that were retrieved and used in the processing of the subject DP. In the right-hand 

column is the series of retrieve, push, and pop rules that were also retrieved from long-term 

memory and used. The bold-face expressions (e.g. ‘unify pop-NP with =NP in DP’) denote the 

unifications of a popped form’s values with an open value in another chunk. In subsequent 

chapters, I reuse this form of notation as shorthand for tracking the use of chunks and rules and 

the application of unification operations.  

S-chunk

DP-the-

chunk

NP-duke-

chunk
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3.3.2 The retrieval and use of chunks and rules 

 Chunk Retrieval: According to activation-based models, such as the current one, chunks 

are selected based on their activation. Once a retrieval rule has been fired, the search through 

LTM for an appropriate chunk begins. To determine which form to retrieve, the processor 

compares chunks based on their activation weights using equations that estimate a chunk’s BASE 

ACTIVATION WEIGHT and its TOTAL ACTIVATION WEIGHT. The base activation weight reflects a 

form’s complete history of use as well as any additional boost due to recent use. The total 

activation weight includes the base activation weight and any additional activation a chunk 

receives from its relation to the current context, or its ASSOCIATIVE ACTIVATION. Henceforth, I 

refer to these two factors as a chunk’s ACTIVATION (i.e. its base activation weight) and RELATION 

(i.e. the additional boost a chunk receives from the context). The following equation is used to 

determine the base activation weight for a chunk: 

Bi = ln � tj−d
�

��	
 

(Base) Activation weight 

In this equation for the base activation weight of item i, n is the total number of retrievals of i, tj is 

the amount of time t since its most recent retrieval j, and d is the constant function of memory 

decay (Anderson 1993, 1995; Lewis & Vasishth 2005).  Thus, an item’s activation is a 

summation of all of its retrievals n and the time since its last retrieval minus a function of decay.  

This activation score is the raw number associated with the chunk irrespective of the current 

processing. It is the weight that the chunk has simply due to the fact that it exists and that it has 

been processed at some point. 
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However, this is not the only factor that the processor uses to determine which chunk to 

retrieve. The relation of a particular chunk with other chunks in the context also affects the 

likelihood of a chunk’s retrieval. For example, some chunks are likely to co-occur, so the use of 

one can increase the likelihood of the other’s retrieval. However, the occurrence of chunks can 

also inhibit the retrieval of other chunks by creating interference. This interference can arise 

when there are many chunks associated with the same goal or processing event, leading to less 

activation for each chunk. 

First, to capture this sense of relation and current context, we turn to the equation used to 

calculate a form’s total activation weight. 

            Ai = Bi +Σj wjsji    Total activation weight 

In this equation, we see the combination of the base activation weight Bi and additional factors. 

The first of these factors Wj refers to the weights associated with elements j of the goal, and the 

second factor Sji refers to the strength of connections between the chunk i and the elements j. Wj 

is not free but is determined by the formula G/j, where—as previously mentioned— j is the 

number of goal elements and G the amount of goal activation.
1
 This goal activation defaults to 1. 

Thus, the weight associated with elements is determined by the number of elements necessary 

for a particular goal chunk. The more elements j, the less of the goal activation resources each 

individual element gets. This creates a ‘fan effect,’ meaning that the more elements the processor 

needs to evaluate, the slower or less-efficient the process is (Anderson 1974). When there are 

                                                 
1
 The assumption is that different goals have different numbers of associated features. For example, a one-column 

addition problem has fewer features than a three-column problem. However, the amount of WM resources remains 

constant over goals, so goals with more features distribute resources more thinly than those with fewer features.  
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only a few elements fighting for processing resources, each individual chunk’s activation is 

higher that if there if there were many elements fighting for the resources. The total number of 

chunks can increase or decrease the amount of activation a chunk receives. The second key 

component of the total activation equation is the strength of the connections among the elements 

Sji. This factor is a measure of the weights of the connections among different forms. The 

purpose of Sji is to capture some element of contextual priming, i.e. where the current goal 

makes some chunks more relevant or salient.
1
 This can also serve to increase or decrease the 

additional activation boost a chunk receives from the context.  

With the addition of these factors, we can calculate the likelihood of a chunk’s retrieval. 

Retrieval is based on both a chunk’s own activation weight Bi and the amount of additional 

activation or interference it receives from the other elements in the context j. The third and final 

factor that affects the retrieval of a chunk is an amount of random noise (Lebiere & Anderson 

1998). I do not consider this factor in any detail here. 

 Production Rule Retrieval: Just as the retrieval of a chunk is sensitive to its activation 

weight, so too is the selection of a particular production rule sensitive to the ‘strength’ of the 

rule. The term PRODUCTION RULE STRENGTH (henceforth STRENGTH) is used to describe the 

“probability and speed of application” of a production rule (Anderson 1993 p 52). This strength 

is sensitive to a rule’s overall history of use, just as a chunk’s activation weight is.  The equation 

for determining a production rule’s strength is given below. 

                                                 
1
 Although this is a relevant factor for determining activation weights, there is debate about its importance. Some 

contend that it is the least important aspect of activation, at least during the learning process (Anderson & Schuun 

2000). 
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Sp = ln � tj−d
�

��	
 

Production strength  

In this equation for the strength of a production rule p, n is the total number of uses of p, tj is the 

amount of time t since its most recent use j, and d is the rate of memory decay (Anderson & 

Schuun 2000, Lebiere 1998).  This factor of decay, d, affects the accessibility of rules just as it 

affects the accessibility of chunks. For both chunks and rules, the onset of decay begins as soon 

as the processor is done using the particular chunk or rule. For chunks, the onset begins as soon 

as the chunk is popped from the retrieval buffer. For rules, the onset begins as soon as the rule 

has completed the THEN part of its statement. As a consequence, the activation/strength of 

chunks and rules is sensitive to recency of use, making them both susceptible to recency effects. 

Just as we saw with the chunks, the retrieval and application of a particular rule is 

sensitive to the demands of the current context. A chunk’s usefulness is determined by the 

current goal or subgoal. For chunks, I called the connection to context ‘relation.’ For rules, I use 

the term PRODUCTION RULE UTILITY, as adopted from Anderson (1993) (henceforth utility). 

Utility refers to the expected gain associated with firing a rule minus the expected cost associated 

with the rule and is determined by using the formula 

U = PG – C     (Production Rule) Utility 

where P stands for the probability of success, G stands for the value of the particular goal, and C 

stands for the cost associated with implementing the rule. Determining the values of P and C 

depends on previous experience with the rule. P is estimated using the formula 
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P = qr/(1-(1-q)f)   Probability of success 

where q is the likelihood that a rule achieves its intended effect (e.g. retrieving a NP), r is the 

likelihood that the rule leads to the completion of the larger goal (e.g. processing a sentence), and 

f is measures the decline in the probability of achieving the goal if the rule fails. C is estimated 

using the formula  

C = a + b    Associated cost  

where a is the cost associated with the rule itself and b is the cost associated with the rules that 

need to fire following the particular rule in order to achieve  the larger goal. For example, if the 

goal is to process the subject of a sentence and a rule fires to  

Both q and a are linked to the rule directly, whereas r and b must be estimated based on 

expected states and outcomes. To approximate the values for expected states, the processor 

considers the processing that has already occurred and the amount of processing that is likely to 

occur before the completion of the goal. For example, say that the processor is produce the 

subject of a sentence and that, given the current context, it has two equally as accessible rules: 

one that retrieves a proper name (e.g. Andrew) and one that retrieves a DP (e.g. the). If the 

processor uses the rule that retrieves the proper name, there are no additional steps necessary to 

complete the processing of the subject phrase. However, if the processor uses a rule that retrieves 

a DP-the, there are additional rules that must fire, i.e. a rule to retrieve an NP argument for the 

DP (e.g. DP-the and NP-musician). The processor can predict the number of rules that need to 

follow the selection of a particular rule based on its previous uses of a rule. For instance, the 
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processor can estimate that at least one more rule needs to fire following a DP-retrieval to 

generate a grammatical phrase based on the other DP-processing events it has previously 

encountered. Because of the stack-like composition of subgoals (Anderson & Douglass 2001), 

the processor can estimate the amount of processing prior to the current state by referring to the 

current subgoal structure. And because of its previous experience with similar processing events, 

the processor can estimate the amount of processing likely to occur after the current state. The 

amount of processing correlates with difficulty, and the more difficult a problem is, the less 

likely it is to be successfully completed. Consequently, the more processing that is necessary, the 

more costly the processing is.  

 For example, consider the processing of an equation such as 9x3. The least costly option 

that is also likely to resolve the goal ‘compute equation’ is retrieving the declarative chunk for 

the particular question, namely the chunk ‘9x3=27.’ Another option that is low-cost but less 

likely to resolve the goal is random guessing. A third option that is more costly but also more 

likely to resolve the goal is to compute the equation step-by-step by retrieving each number and 

the method of computation individually. If each of the options has the same base level activation, 

the processor must rely on the estimated utility of the options to decide among them. Given these 

three choices, the processor is likely to choose the first, assuming the declarative chunk exists. 

Otherwise, the processor must choose between the other options, each of which has its pros and 

cons, one with low cost and low success, another with high cost and high success.  

For these reason, both the number of rules necessary for processing a goal and each rule’s 

history of success determine the likelihood of a rule’s retrieval. To summarize, Anderson (1993, 
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p 63) states that the selection of a production rule is determined by the following factors: 

a) The past history of use of various declarative chunks 

b) The goal that is currently active 

c) The elements in the current context  

d) The complexity of the rule 

e) The past frequency of use of the production rule 

f) The past history of success of the production rule 

g) The amount of effort put into solving the problem so far 

h) The similarity between the goal state and the state resulting from applying the 

production rule 

i) What other options for behavior are available 

As is obvious given these numerous factors, the selection of production rules is sensitive to many 

aspects of the current context and previous experience. For our purposes, I reduce these factors 

to the two general factors mentioned above: strength and utility.  

 For both chunks and rules, there are two general factors contributing to the likelihood of 

retrieval: activation/strength and relation/utility. According to my use of these terms, a chunk’s 

activation weight and a rule’s strength are blind to the current context. They are simply scores 

based on the history of use of a form, regardless of whether the form was correctly used or 

successful. For example, if a word was erroneously retrieved (e.g. the speaker meant to say cat 

but instead said hat), the erroneously-retrieved word still receives a boost to its activation and 

may, therefore, end up with a slightly higher activation weight. Likewise, if a rule is selected but 

ultimately fails to achieve its goal, it still receives a boost in its strength simply because it was 

retrieved. The second set of factors, i.e. relation and utility, are more attuned to the current 

processing context. For example, chunks can receive additional weight from the other chunks in 

the context, and rules can receive additional weight from their history of success in a similar 
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processing event. In this way, both chunks and rules are sensitive to their history and the current 

context.   

3.4 Unification and the processing of structural contexts 

 Now that we have linguistic representations (chunks and rules), a way to retrieve them 

(activation and relation for chunks, strength and utility for rules), and buffers to manipulate 

them, we need one final ingredient: a way to combine linguistic forms. I begin with a description 

of this operation, UNIFICATION, and then demonstrate how the outcomes of this operation reflect 

the processing of different structural contexts. These different structural contexts lead to different 

patterns of memory traces, which subsequently affect retrieval. These different patterns 

ultimately serve as the basis for structural context effects on structural priming. 

3.4.1 Unification 

 We begin with the process of UNIFICATION, which is an operation by which two structures 

are merged to generate a new, equally specified or more specified structure (Jurafsky & Martin 

2009; Shieber 1989). This new structure contains the union of all the feature-value pairs of the 

original structures. For successful unification, the two structures must have either 

complementary feature-value pairs or at least no conflicting feature-value pairs. For example, say 

that Structure 1 has the feature-value pair [X : a], and Structure 2 has the pair [X : a]. Structure 1 

and 2 can be unified (as denoted by the ) because the values of their features agree: 

[X: a]  [X: a] = [X : a] 
 

This type of unification acts as a simple equality check that takes two feature-value pairs and 

returns the same feature-value pair. In other words, the processor checks each structure, 
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determines if they contain the same feature, and then determines if they have the same value. If 

the structures have the same features with the same values, then the two structures are equal and 

can be unified. Conversely, if the two structures have different values for the same feature, they 

cannot be unified. For instance, if Structure 1 has the feature-value pair [X : a] and Structure 2 

has the pair [X : b], the unification fails: 

[X: a]  [X: b] = fail 
 

The union of these two structures fails because each structure contains a different value for the 

same feature.   

Unification operations can also unify two structures that do not have overlapping feature-

value pairs. For example, say that Structure 1 has the feature-value pair [X : a], and Structure 2 

has the pair [Y : b]. Structure 1 and 2 can be unified: 

[X: a]  [Y: b] =  X : a 

           Y: b 
 

The reason these two structures can be unified is that they do not conflict. Each has different 

features with different values. Similarly, structures that have different levels of specificity can be 

unified. Take Structure 1 and Structure 2 below. Here we see that both have a feature for X, but 

Structure 2 leaves its value open, as denoted by the “[ ].” 

[X: a]  [X: [ ]] = [X : a] 
 

This open [ ] value is identical to the “=“ notation in the discussion of chunks above. Here, the 

unification leads to a form in which the features are matched and the values are shared. The 
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resulting structure contains the feature that occurred in both structures (i.e. ‘X’) and the value 

that occurred in only one (i.e. ‘a’). 

 To make this clearer, consider again the chunks presented in section 3.3.1 above: 

 

Chunk 1 

  

Chunk 2 

  

Chunk 3 
isa    : DP 

case  : nom 

num  : sg 

orth  : the 

comp : =NP 

 

 isa    : NP 

case  : nom 

num  : sg 

orth  : duke 

 isa    : NP 

case  : acc 

num  : pl 

orth  : rubies 

Chunk 4  Chunk 5  Chunk 6 

isa   : S 

num  : pl 

spec  : =DP 

comp : =VP 

tense  : past/pres 

finite : finite 

 

 isa : AdjP 

orth : nice 

mod : =NP 

    isa : RelC  

 num  : sg 

   spec: =RelP  

comp : =S-gap 

 mod : =NP 

 
 

 

Let’s say that the processor has retrieved Chunk 1 and chunk 2, which I abbreviate below: 

 

The DP-chunk has an open value (=NP) that is looking for something of the type NP. The 

processor has an active NP chunk. Because this chunk’s ‘isa’ type (NP) matches the open value’s 

type (=NP), the NP-chunk and open =NP value can be unified.  

  

The second pair above denotes the post-unification representation. The indexing (  1  ) indicates 

that the feature-value bundle (i.e. the NP-chunk’s features and values) now serve as the feature-

isa:     DP

orth:   the

comp: =NP

isa:     NP

orth:   duke

1

1

isa:     DP

orth:   the

comp:

isa:     NP

orth:   duke
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values for the DP’s comp (previously =NP). For the remainder of the dissertation, I describe this 

type of unification as the NP-chunk unifying with the =NP value of the DP-chunk’s comp 

feature.  

The unification of two forms occurs whenever the processor has a recently retrieved 

chunk and a currently active chunk whose feature-value pairs do not clash. For instance, in the 

example above, the recently retrieved NP chunk’s values do not conflict with the currently active 

DP chunk’s open =NP value, the NP-chunk can unify with the open =NP value. The unification 

operation, such as the NP and =NP unification above, applies throughout the processing of a 

sentence. For our purposes, I refer to each successful application of the unification operation as a 

UNIFICATION CYCLE. Every ‘cycle’ marks a step towards completing a goal or subgoal, such as 

‘process sentence’ or ‘process DP.’ To complete this goal, the processor needs to move through 

many cycles—cycles that build NPs, DPs, VPs, etc. These cycles help us to count the amount of 

processing between any two points during the processing of a sentence.  For instance, to process 

a DP-subject, there is one cycle that unifies the NP-chunk and the open =NP value of the DP-

chunk and another cycle that unifies the DP-chunk with the open =DP value of the S-chunk. 

Thus, there are two cycles in the formation of a DP subject.  

When the product of one unification cycle can be input for another unification cycle (as 

in the production of the unification of the NP-chunk and the open =NP value of the DP-chunk 

leading to the unification of the DP-chunk and the open =DP value of the S-chunk), the two 

cycles are linked, forming a chain. These UNIFICATION CHAINS include all the unification cycles 

that occur during the resolution of a single goal. Returning to our subject DP example above, we 
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would say that there are two unification cycles in the unification chain for the completion of the 

‘process DP’ subgoal of the S-chunk. Furthermore, all of the unification cycles that are involved 

in the processing of a subject DP and a predicate VP work to satisfy subgoals of the same goal 

(‘process sentence’). Because these two subgoals (i.e. ‘process DP’ and ‘process VP’) stem from 

the same chunk (i.e. the S-chunk), they are part of the same subgoal structure as linked by the S-

chunk. As such, the cycles necessary for the processing of the S-chunk’s DP and its VP are part 

of the same unification chain. To illustrate, let us continue the processing of the S-chunk from 

section 3.3.1.  I stopped the demonstration after the processing of the subject DP, as shown 

below. 

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

 

At this point, the subgoal ‘process VP’ becomes active. The processor chooses to retrieve the 

VP-like-chunk and places it in the buffer. 

  

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

2

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke
1
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

 

The VP-chunk has an open value, i.e. the open =DP chunk. A push rule fires and moves the VP-

chunk to the problem state buffer so that its subgoal ‘process DP’ can be satisfied.  

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

push VP-chunk 

 

The processor notes the subgoal and the empty retrieval buffer and selects a retrieve-DP rule. 

The DP-chunk is placed in the retrieval buffer. 

  

isa : VP

orth : likes

comp : =DP

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

2

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke
1

isa : VP

orth : likes

comp : =DP

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

2 isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke
1
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

push VP-chunk 

retrieve DP-chunk 

 

Another rule fires to move the chunk into the problem state due to its open =NP value.  

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

push VP-chunk 

retrieve DP-chunk 

push DP-chunk 

 

Then the processor fires a retrieve-NP chunk and places the NP-king-chunk into the retrieval 

buffer. 

  

isa : VP

orth : likes

comp : =DP

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

2

isa : DP

orth: the

comp : =NP

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke
1

isa : VP

orth : likes

comp : =DP

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

2

isa : DP

orth: the

comp : =NP

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke
1
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

push VP-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

 

This chunk has no open values, so it is popped. It can unify with the open =NP value in the DP-

chunk, so they are unified, thereby modifying the goal state. 

 
State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

push VP-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

 

The DP-chunk is complete, so it is popped and then unified with the open =DP value in the VP-

chunk. 

isa : VP

orth : likes

comp : =DP

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

2

isa : DP

orth: the

comp : =NP

isa : NP

orth : king

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke
1

isa : VP

orth : likes

comp : =DP

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

2

isa : DP

orth: the

comp :  

isa : NP

orth : king3

3

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke
1
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

push VP-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in VP 

 

This unification satisfies the subgoals of the VP-chunk, so it can be popped. This allows for the 

VP-chunk values to be unified with the open =VP values in the S-chunk.  

isa : VP

orth : likes

comp : 

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

2

isa : DP

orth: the

comp :  3

4

4

isa : NP

orth : king3

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke
1
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

push VP-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in VP 

pop VP-chunk 

unify pop-DP with =VP in S 

 

Now, all of the S-chunk’s subgoals are satisfied, and the S-chunk can be popped 

 

State of buffers 

List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in S 

retrieve VP-chunk 

push VP-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

pop DP-chunk 

unify pop-DP with =DP in VP 

pop VP-chunk 

unify pop-DP with =VP in S 

pop S-chunk 

 

Retrieval buffer

isa : S

spec :

comp : 

Problem state

2

5

isa : DP

orth: the

comp :  3

4

isa : NP

orth : king3

isa : VP

orth : likes

comp : 4

5

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke1

Retrieval buffer

isa : S

spec :

comp : 

Problem state

2

5
isa : DP

orth: the

comp :  3

4

isa : NP

orth : king3

isa : VP

orth : likes

comp : 4

5

isa : DP

orth : the

comp :      1
2

isa : NP

orth : duke1
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Note that the indices associated with the S-chunk are 2 and 5 . Each of these indexes satisfies one 

of the S-chunk’s subgoals. During subsequent retrievals of the S-chunk, the processor retrieves 

the entire chain of unifications that built the 2 and the 5 . In this way, the chains are unified under 

the S-chunk. 

  3.4.2 Arguments and adjuncts 

 As the processor retrieves and unifies chunks, it generates different sentences. These 

sentences can contain different numbers and patterns of arguments and adjuncts. The distinction 

between arguments and adjuncts is important to the model I am adopting because arguments are 

selected by lexical items (e.g. certain verbs such as tell may require one or more post-verbal 

arguments), and adjuncts are not. For example, the complement clause “that the man lied” is an 

argument of the noun fact in (7), whereas the relative clause “that the man told her” is an adjunct 

modifying fact in (8). 

(7) Amanda knew the fact that the man lied. 

(8) Amanda knew the fact that the man told her.   

 

A lexical item’s feature-value pairs contain information about whether arguments are necessary 

and, if they are, what the syntactic category of the argument must be. The information contained 

within the feature-values pairs of chunks ultimately affects the pattern of subgoals that arises 

during a sentence’s processing, as is described in greater detail in section 3.4.3 below. 

The processing of arguments and adjuncts and differences between them have been 

explored in detail in both linguistics and psycholinguistics (e.g. Ahrens 2003; Boland 2005; 

Boland, Tanenhaus, & Garnsey 1990; Boland, Tanenhaus, Garnsey, & Carlson 1995; Chambers, 

Tanenhaus, & Magnuson 2004; Chomsky 1981; Clifton, Speer, & Abney 1991; Demestre & 
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García-Albea 2004; Ferreira & Henderson 1990; Kaplan & Bresnan 1982; Kennison 2002; 

Shapiro, Oster, Garcia, Massey, & Thompson 1999; McElree & Griffin 1995; Tanenhaus, 

Spivey-Knowlton, Eberhard, & Sedivy 1995;  Trueswell, Tanenhaus, & Garnsey 1994; Tutunjian 

& Bloand 2008; van Gompel, Pickering, & Traxler 2001).   

A common finding is that arguments are processed more quickly than adjuncts, leading 

some to contend that arguments are primary, even when the argument is atypical (Boland 2005; 

Clifton, Speer, & Abney 1991; Shapiro, Oster, Garcia, Massey, & Thompson 1999). The 

difference between processing arguments and adjuncts may arise from frequency, in that 

arguments are more frequent than adjuncts based on overall use (Demestre & García-Albea 

2004; Tutunjian & Boland 2008; van Gompel, Pickering, & Traxler 2001). Similarly, lexical 

knowledge of particular verbs may guide the initial syntactic parse to conform to each particular 

word’s constraints, such constraints relating to its argument structure, subcategorization frames, 

and thematic role constraints (Boland 2005; Boland et al. 1990; Britt 1994; Chambers, 

Tanenhaus, Magnuson 2004; Tanenhaus et al. 1994). Context can also affect whether 

momentarily ambiguous phrases are parsed as arguments or adjuncts (Altman, Garnham, & 

Dennis 1992; van Berkum, Brown, & Hagoort 1999). For instance, Altman et al. (1992) 

presented participants sentences beginning with phrases like “The fireman told the woman 

that…” Their participants often parsed the that as marking a complement clause (“The fireman 

told the woman that he risked his life”) although it could be marking a relative clause (“The 

fireman told the woman that he risked his life for to be happy”). However, this preference was 

sensitive to context. Readers were more likely to parse the that as being the head of a relative 
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clause if there were multiple potential referents in the context (e.g. there were two women, one 

who the fireman saved). The argument/adjunct distinction has also been found in production 

data. Arguments are more likely to be produced within the same intonational phrase as their 

selector, suggesting that the selector and the argument are processed as a unit (Gayraud & 

Martinie 2008; Watson, Breen, & Gibson 2006). 

  In a similar vein, syntactic frameworks such as Tree Adjoining Grammar (TAG), along 

with its lexically-based (LTAG) variant, argue that arguments and adjuncts are represented as 

structurally different within the grammar and that they are processed differently (Demberg & 

Keller 2008a,b, 2009; Ferreira 2000; Frank 1992, 2004; Frank & Badecker 2001; Joshi 1985; 

Joshi, Levy, & Takahashi 1975; Keller 2009; Kim, Srinivas, & Trueswell 2002).  In TAG, the 

grammar consists of a collection of tree structures called ELEMENTARY TREES, such as the tree for 

a DP header by the determined “the” in Figure 2.7 below. 

Figure 2.7: TAG tree for DP-the 

 

The lexical head, the, is present. However, the lexical head of the argument NP is not present. 

Only the syntactic category (i.e. NP) is noted on the tree. In TAG, dependencies between 

elements such as the dependency between determiners and nouns are represented in the trees in a 

manner similar to the open values in feature-value pairs, as discussed in section 3.3.1 above. 

 In sum, previous research suggests that any model of sentence processing must treat 

arguments and adjuncts differently. The model of language processing I adopt in this dissertation 
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captures the distinction between arguments and adjuncts through constraints on the interaction 

between declarative chunks and production rules. In the next section, I present a simplified 

example that illustrates how adjuncts and argument are differently processed by my model. 

Chapter 3 and 4 explore the differences between arguments and adjuncts in greater detail.  

  3.4.3 Unification of arguments and adjuncts  

 Unification always involves the unification of sets of feature-value pairs. For instance, a 

DP-chunk takes an NP argument, as denoted by the =NP in its ‘comp’ feature. Recall that this 

feature-value pair (‘comp : =NP’) states that the value of the feature ‘comp’ must be something 

of the type NP (i.e. ‘isa : NP’). On the other hand, adjuncts are, by definition, not selected by any 

other element. Adjuncts place selectional restrictions on the forms with which they can unify, but 

they themselves are never required by another chunk. As a consequence, adjuncts are not 

syntactically restricted by the elements that they unify with. Consider again the declarative 

chunks presented in section 3.3.1. 

 

Chunk 1 

  

Chunk 2 

  

Chunk 3 
isa    : DP 

case  : nom 

num  : sg 

orth  : the 

comp : =NP 

 

 isa    : NP 

case  : nom 

num  : sg 

orth  : duke 

 isa    : NP 

case  : acc 

num  : pl 

orth  : rubies 

Chunk 4  Chunk 5  Chunk 6 

isa   : S 

num  : pl 

spec  : =DP 

comp : =VP 

tense  : past/pres 

finite : finite 

 

 isa : AdjP 

orth : nice 

mod : =NP 

    isa : RelC  

 num  : sg 

   spec: =RelP  

comp : =S-gap 

 mod : =NP 

 
 

 

Chunks 1, 4, 5, and 6 all have open values for their complement (comp) feature. These open 
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values state what arguments are required by the chunk. Note that Chunks 5 and 6 have a ‘mod’ 

(‘modification’) feature.
1
 This feature states the type of phrase the chunk modifies. However, 

unlike the other chunks, Chunks 5 and 6 (i.e. AdjP-chunk and RelC-chunk) are never required by 

any other chunk. No NP-chunk, for instance, requires an AdjP-chunk or RelC-chunk in the same 

way that a DP-chunk requires an NP-chunk. 

 Recall that when a chunk has no open values, it is popped from the retrieval buffer. At 

this point, it can go directly to long-term memory (LTM) without further processing or it can 

become available for unification with the next chunk in the problem state. When the next chunk 

in the problem state has open values that the popped chunk can resolve, the values of the popped 

chunk and the open value in the currently active chunk unify (see section 3.3.1 for a 

demonstration of the unification of popped chunks’ values and open values in currently active 

chunks). However, if the popped chunk’s feature-value pairs do not match any open values in the 

currently active chunk, the popped chunk proceeds to LTM.  

Consider the following: 

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

 

                                                 
1
 See Sag, Wasow, & Bender’s (2003) and Kromann’s (2004) for examples of uses of the ‘mod’ and ‘amod’ 

features.  

isa : DP

orth: the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state
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In the example presented above (section 3.3.1), after the DP-chunk was placed in the problem 

state buffer, the processor checked the status of the problem state buffer and the retrieval buffer, 

and found that the problem state had a subgoal to resolve the open =NP value (the subgoal 

‘process NP’) and that the retrieval buffer was empty. In the previous example at this stage, the 

processor chose to retrieve the NP-duke-chunk. The utility of an NP-chunk given the current 

problem state is high, but this does not entail that the processor must retrieve an NP-chunk. Other 

pressures can lead to the retrieval of different types of chunks. For example, during 

comprehension, the processor may encounter an adjective. This input leads to the retrieval of an 

AdjP-chunk rather than an NP-chunk. Similarly, during production the processor may retrieve an 

AdjP-chunk due to semantic or pragmatic pressures such as pressure to identify a particular 

referent when there is a group of possible referents (e.g. the ‘nice’ duke rather than the ‘tall’ 

duke). The demonstration that follows attempts to encompass both sentence production and 

sentence comprehension. 

Say that the processor retrieves the AdjP-nice-chunk rather than an NP-duke-chunk. 

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve-AdjP-chunk 

 

There is an open, unresolved ‘mod’ value in the AdjP-chunk, i.e. =NP. The processor notes this 

isa : AdjP

orth : nice

mod : =NP

isa : DP

orth : the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state
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open value and fires a rule to place the AdjP chunk into the problem state until its ‘mod’ value is 

resolved. 

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve-AdjP-chunk 

push AdjP-chunk 

 

The processor checks the buffer and sees that there is a subgoal of processing an open =NP value 

and that the retrieval buffer is empty. The processor chooses a ‘retrieve NP’ rule, and places the 

NP in the retrieval buffer. 

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve AdjP-chunk 

push AdjP-chunk 

retrieve NP-chunk 

 

The NP-chunk has no open values, so it can be popped. Furthermore, because its matches open 

values (=NP) in the AdjP-chunk, the subgoal can be satisfied.  This process is similar to the 

satisfaction of the DP-chunk’s subgoal ‘process NP,’ as shown in the example in section 3.3.1 

above. 

isa : AdjP

orth : nice

mod : =NP

isa : DP

orth : the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

isa : AdjP

orth : nice

mod : =NP

isa : DP

orth : the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

isa : NP

orth : duke
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State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve AdjP-chunk 

push AdjP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in AdjP 

 

Now the open value in the AdjP is resolved, the subgoal ‘process NP’ is satisfied, and there are 

no more open values in the AdjP. The processor notes the state of the AdjP-chunk and selects a 

rule to pop it from the buffer system.  

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve-AdjP-chunk 

push AdjP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in 

AdjP 

pop AdjP-chunk 

 

However, unlike the previous examples, the AdjP-chunk cannot unify with the next chunk in the 

problem state because its values do not satisfy any unresolved, open values in the DP-chunk. 

Consequently, the AdjP-chunk goes to long-term memory. The processor moves to satisfy the 

next subgoal, i.e. the DP-chunk’s ‘process NP’ subgoal 

In the demonstration above, the AdjP-nice duke-chunk was sent to LTM. This is a 

consequence of the fact that the syntactic parsing of the unit was complete and that the phrase is 

isa : AdjP

orth : nice

mod : 

isa : DP

orth : the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

isa : NP

orth : duke
1

1

isa : AdjP

orth : nice

mod :   

isa : DP

orth : the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

1

isa : NP

orth : duke
1
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now a declarative chunk that can be recalled independently. This does not mean that the semantic 

processor cannot continue to hold the AdjP active. Semantic tracking and processing can occur 

independent of syntactic processing (section 3.1). Just because the syntactic module has satisfied 

its goals and has, hence, finished processing a particular form does not mean that other levels of 

processing (e.g. semantic) must also be done processing the form. My model of language 

processing assumes there are multiple levels of processing that are distinct—though integrated—

such that they can function independently while still informing one another (e.g. Allen & 

Badecker 1999, 2000; Dell 1986; Roelofs 1992, 1993). I restrict my attention here to syntactic 

processing but leave open the possibility that linguistic forms that are no longer being processed 

syntactically can still be active semantically.  

Returning to the processing of the current phrase, the processor still has a series of 

subgoals to satisfy, starting with the ‘process NP’ subgoal associated with the open =NP value in 

the DP-chunk. The processor selects a ‘retrieve NP-chunk’ rule, fires it, searches declarative 

memory for the most active and relevant chunk, finds the recently-used NP-duke-chunk, and 

places it into the retrieval buffer. 

State of buffers List of rules  

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve AdjP-chunk 

push AdjP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in AdjP 

pop AdjP-chunk 

retrieve NP-chunk 

 

isa : DP

orth : the

comp : =NP

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

isa : NP

orth : duke1

isa : AdjP

orth : nice

mod :   1
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Note that the NP-duke-chunk still has the index that it received during its earlier unification with 

the AdjP-chunk. This reflects the fact that the NP-chunk’s values and the previously open =NP’s 

values are the same. Because the NP-chunk has no open values, it can be popped. Furthermore, 

because its values can unify with the open =NP value in the DP-chunk, the subgoal I ‘process 

DP’ is satisfied, as illustrated by the index 1.  

State of buffers List of rules  

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve AdjP-chunk 

push AdjP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in AdjP 

pop AdjP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 

 

The processing of the DP-chunk and the S-chunk proceed as they did in the previous example, as 

shown below with the popping of the DP and the unification of its values with the open =DP 

value in the S-chunk. 

  

isa : DP

orth : the

comp :

isa : S

spec : =DP

comp : =VP

Retrieval bufferProblem state

1

isa : AdjP

orth : nice

mod :   1

isa : NP

orth : duke
1
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State of buffers List of rules  

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve AdjP-chunk 

push AdjP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in AdjP 

pop AdjP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify pop-NP with =NP in DP 
pop DP-chunk 

unify pop-DP with =DP in S 

 

 

However, because the AdjP-chunk did not unify with an open value of the DP-chunk, the DP-

chunk and the AdjP-chunk do not occur in the same unification chain. Recall that each 

application of a unification operation counts as a unification cycle. The product of this 

unification cycle can participate in a subsequent unification cycle. For instance, as we saw in the 

example in 3.3.1, the product of the unification cycle that involved the unification of the NP-

chunk and the open =NP value of the DP-chunk can then be unified with the open =DP value of 

the S-chunk. However, sometimes a unification cycle leads to formation of a unit that does not 

participate in a subsequent unification cycle, as with the case of the unification cycle that unified 

the NP-chunk with the open =NP value in the AdjP-chunk. In this case, the form is popped and 

sent directly to memory as a separate chain (Anderson & Lebiere 1998).  

This is where the processing of an argument and an adjunct differ. After processing an 

adjunct phrase, such as the AdjP-chunk above, the unification chain associated with the adjunct 

ends. However, after processing an argument, as in the processing of the DP-chunk, the S-

isa : DP

orth : the

comp :      

Retrieval buffer

isa : S

spec :

comp : =VP

Problem state

1
2

2

isa : AdjP

orth : nice

mod :   1

isa : NP

orth : duke
1
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chunk’s subgoal still remains to be satisfied. As such, the unification chain does not end.  

The important thing to keep in mind for what follows is that the processing of an 

argument isrequired by the argument’s selector. Thus, an argument and its selector all occur in 

the same unification chain. However, an adjunct does not form part of the same unification chain 

as the element that the adjunct modifies.  

In the example above, the AdjP-chunk and the DP-chunk do not occur in the same 

unification chain, as illustrated below. 

Chain 1 (‘process AdjP’) Chain 2 (‘process S-chunk’) 

unify pop-NP with =NP in AdjP unify pop-NP with =NP in DP 

unify pop-DP with =DP in S 

 

 The important thing to note here is that the processing of the AdjP-chunk and the 

processing of the DP-chunk led to the formation of two separate unification chains (see section 

3.4.1). The processing of the AdjP-chunk, like the processing of all other adjunct chunks (e.g. 

RelC-chunks and AdvP-chunks), led to the formation of a separate unification chain. In contrast, 

because arguments are selected by elements in the problem state buffer, they are always unified 

with a chunk currently active in the problem state. In this way, the processing of arguments and 

adjuncts differs. 

All the elements (e.g. chunks, rules, and unifications) that are necessary for the 

processing of an argument or an adjunct form a chain. After the processing of an adjunct, the 

chain associated with an adjunct ends because the adjunct is not required by anything in the 

problem state buffer. However, arguments work differently. The argument unifies with an open 

value in its selector. Subsequently, the unification chain associated with the argument can 
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continue to grow (for example, if the result of the unification is required by some element in the 

problem state buffer).  

All the elements associated with the same unification chain are ultimately represented as 

one unit in memory. During subsequent retrieval when the processor attempts to retrieve a 

sentence, it retrieves the unification chains generated by the processing of the sentence. 

Ultimately, the composition of the chain (e.g. its length) affects the ability of the processor to 

locate specific elements within the chain.  

The reason that properties of these unification chains affect access to specific elements 

associated with them is that they create retrieval structures and retrieval cues that facilitate the 

retrieval of the processing event. These retrieval structures refer to the way the retrieval cues (i.e. 

any stimulus that helps the processor to locate a particular memory) are organized into a stable 

structure (Ericsson & Kintsch 1995). The creation and composition of these structures and cues 

can affect subsequent access to memories. As such, the processor is concerned not only with the 

retrieval of linguistic forms but also the packing of individual linguistic forms for subsequent 

retrieval. This packing (also called ‘chunking,’ see Gernsbacher 1990, Kintsch 1989, Miller 

1956) allows the processor to manipulate larger units (e.g. phrases or clauses rather than 

individual words), thereby maximizing the limited cognitive resources at its disposal.  

Language processing requires the building and integrating of segments, leading to the 

creation of a structure to which linguistic forms (e.g. words) are adjoined (Kintsch 1988). This 

structure acts as a cue for subsequent retrieval (Baddeley, Hitch, & Allen 2009; Carpenter & Just 

1988, 1989; Ericsson & Kintsch 1995). One way to delineate the size of these structures is to 
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make use of the subgoal structure. Specifically, when the popping of a chunk leads to the 

completion of a subgoal (as in the AdjP case where the popped chunk cannot feed directly into 

the next subgoal), it denotes the end of a unit’s processing, creating a boundary for the retrieval 

structure. Thus, for our purposes, I contend that the size of these retrieval structures is 

determined by features of the subgoal structure. By packing information about the chunks 

retrieved or the rules fired into retrieval structures, the processor creates units and retrieval cues 

that allow for greater subsequent controlled access. Rather than having to reactivate each 

individual chunk or rule, the processor can retrieve larger structures and, thereby, streamline 

reanalysis. When the processor needs to verify that a specific chunk or production rule occurred, 

it can activate the retrieval structures and search them rather than having to individually 

reactivate every form that occurred. In this way, the processor uses unification chains to generate 

retrieval structures to expedite processing of a form within the chain. 

Throughout the dissertation, I assume that the processor retrieves unification chains and 

uses these chains to, for example, verify that a particular word occurred. Because the initial 

processing leads to different patterns of subgoals and, hence, different types of unification 

chains, the processing of the structural context affects subsequent linguistic behavior.   

In the following chapters, the reason for this effect becomes more clear, but as a foretaste, 

the unification chains affect subsequent performance by affecting the relation values for chunks 

and the utility values for production rules (section 3.3.2). Recall that both of these values reflect 

the connection between a particular chunk or rule and other chunks or rules in its context. When 

the processor retrieves a unification chain, it estimates the relation of a chunk to other chunks in 
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the unification chain. Likewise, it estimates the utility of a rule given the other rules in the chain. 

Depending on the number of other chunks and rules, the chunk’s relation values and the rule’s 

utility values fluctuate. I return to these arguments in Chapters 3 (for chunks) and 4 (for rules).   

 

4. Looking back and looking forward 

We began the chapter with the observations that both recency and structural context influence 

subsequent use of a linguistic expression, namely in the amount of priming or processing 

facilitation we find. The RICE hypothesis combines these two observations and claims that the 

way a linguistic form is processed within its larger structural context mediates the effects of 

recency on subsequent behavior. In the following chapters, I test this hypothesis first with lexical 

priming (Chapter 3) and then with structural priming (Chapter 4).  

In each of these studies, I vary only the structural context in which a prime occurs and 

control for recency by controlling the amount of time or material between the prime and the 

target. For example, in the lexical priming study presented in Chapter 3, I control the number of 

syllables and milliseconds between the offset of the prime and the onset of the target. Prime 

words always occur in the same linear position (the underlined word in (9)-(12) below), but the 

larger structural context in (9)-(12) (bracketed) varied.  

(9) Prime in matrix clause 

The station received the call, and [the policeman issued the ticket to the poet.] 

 

(10) Prime in the internal complement of a noun 

The station reported the fact [that the policeman issued the ticket to the poet.] 

 

(11) Prime in the internal complement of a verb 

The station revealed [that the policeman issued the ticket to the poet.] 
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(12) Prime in relative clause 

The station commended the policeman [who issued the ticket to the poet.] 

In each of these sentences, the prime word issue occurs in roughly the same linear position, i.e. 

6-8 words from the beginning of the sentence and five words from the end of the sentence. After 

hearing sentences such as (9)-(12), participants performed a decision task in which they 

determined whether the target word issued occurred in the sentence they just heard. If the word 

primed equally as well regardless of it larger structural context, there should be no systematic 

difference in response times based on the structural context of the prime.  

Throughout both the lexical and structural priming experiments, the linear position of the 

prime, the number of fillers between the prime and the target, and, in some cases, the amount of 

linear time were controlled. Thus, if there are any differences in priming behavior, the structural 

context in which the prime occurred is the most likely cause. 

Before turning to the studies in Chapters 3 and 4, I wish to highlight a few key features of 

language processing discussed above, focusing on their relevance to RICE. Recall that the RICE 

hypothesis, as repeated below, contends that context mediates recency effects. 

Recent Interaction with Context Effect (RICE) 

The effect of a recently-encountered linguistic form on subsequent behavior is  

mediated by the way its structural context was processed 

 

In order to test this hypothesis, I presented a model of language processing with a few key 

components beginning with relevant features of memory and linguistic knowledge. 

Key Point 1:  
Language processing is a series of coordinated goals. Satisfying these goals requires 

the use of long-term and working memory. The interaction of LTM and WM occurs 
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in network of interacting buffers with the retrieval of declarative memories (chunks), 

the firing of procedural memories (rules), and application of unification operations to 

unify chunks.  

 

Language processing is a memory-based, goal-oriented behavior that uses chunks, rules, and 

unification operations to satisfy a particular goal, for example producing or comprehending a 

sentence. A primary goal, such as ‘process sentence,’ generates secondary goals, or subgoals, 

such as ‘process DP.’ Each subgoal is satisfied through (i) the firing of production rules and (ii) 

the unification of the chunks retrieved and popped by the rules. 

Key point 2: 

The retrieval of both chunks and rules is sensitive to their activation/strength and their 

relation/utility given to the context.  

 

Both a chunk’s activation level and a rule’s strength are sensitive to their retrieval history and the 

amount of time between the most recent use and the current context. Additionally, both chunks 

and rules are sensitive to the specific needs of the current context, e.g. if the processor is working 

on a ‘process DP’ subgoal or a ‘process VP’ subgoal. Other chunks in the context can increase or 

decrease the activation of another chunk. Similarly, the production rules associated with a given 

processing context or goal can increase or decrease the likelihood of another rule’s retrieval. The 

likelihood of a particular chunk’s retrieval depends in part on how high its activation weight is 

relative to other possible chunks. The likelihood of a particular rule’s retrieval depends in part on 

how strong it is and how likely it is to satisfy a goal while incurring minimal cost.  

Key point 3: 

The retrieval of a form is sensitive to decay. This decay is determined by the amount 

of the time since its most recent activation (chunks) or firing (rules).  

 

Forms receive a boost in activation after their retrieval. This boost decays over time. As this 
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boost decays, priming behavior decays. Decay for a retrieved chunk begins as soon as it has been 

popped from the retrieval buffer (chunks). Decay for a fired rule begins as soon as it has 

completed all the actions in the THEN part of it is rule. Decay is a constant function and should 

affect all forms equally.  

Key point 4:  

Unifications involved in the satisfaction of a common goal form a chain. The nature 

of these chains affects the speed and accuracy of recall for specific items in the chain. 

 

The product of a unification cycle can subsequently unify with an open value in a chunk being 

held in the problem state buffer. When this occurs, the unification cycles form a chain. All the 

unification cycles that occur uninterrupted (i.e. the popped chunk unifies with the next chunk in 

the problem state) are part of the same unification chain. During subsequent retrieval, this chain 

of unification cycles is retrieved and inspected. The more elements within the chain, the slower 

and less reliable the search for a particular element within the chain.  

 Chapter 3 explores the following claim about how recency and structural context interact 

with regard to lexical priming: 

Lexical Priming Claim 

Lexical priming is sensitive to the structural configuration in which the lexical item 

occurs not just its linear position.  

 

RICE assumes that the retrieval of a recently-processed chunk is not sensitive only to recency. 

The features of the unification chain in which the prime occurs also affect priming behavior. 

Chunks that occurred in longer chains demonstrate less priming than those that occur in shorter 

chains. This is explained in greater detail in Chapter 3. Standard accounts of lexical priming 

effects (e.g. Birch & Garnsey 1995; Fleischman & Gabrieli 1998; Lucas 2002; Para & Rosa 
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2002; McKoon, Ratcliff, Ward 1994; McNamara 2005; Ratcliff & McKoon 1992) claim that 

structural context affects lexical priming only when the prime occur in specific structural 

contexts, such as focus position of focus structures. Differences, such as whether the prime 

occurred in an argument clause (e.g. the internal complement of a noun) or an adjunct clause 

(e.g. a relative clause) should not affect priming behavior when time is held constant. The 

standard account claims that, as long as the structural contexts are all discourse neutral and the 

primes occur in the same linear position, there should be no differences in priming behavior 

among them.
1
   

 The second claim pertains to structural priming, i.e. the tendency to reuse recently 

encountered structural forms (e.g. Bock 1986b, Bock & Kroch 1989; Bock & Griffin 2000; 

Branigan, Pickering, McLean, & Steward 2006; Cleland & Pickering 2003; Ferreira 1996; 

Ferreira & Bock 2006; Frazier, Taft, Roeper, Clifton, & Ehrlich 1984; Levelt & Kelter 1982; 

Pickering & Branigan 1998):  

Structural Priming Claim 
Structural priming is sensitive to the structural configuration in which the prime 

occurs not just its linear position.  

 

The ability of a structural pattern to prime depends on the availability of the prime’s memory 

trace during subsequent processing. The availability of this prime depends, in part, on time. 

Primes that occurred more recently are more likely to demonstrate priming than those that did 

not occur recently. This tendency makes structural priming similar to lexical priming, and just as 

RICE claims that lexical priming is sensitive to more than just time, so too does it claims that 

                                                 
1
 Note that this effect pertains only to lexical priming and not semantic or referential priming as in Hofmeister 

(2008). 
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structural priming is sensitive to more than just time. Specifically, RICE contends that structural 

primes associated with structural contexts with shorter unification chains are more accessible and 

more likely to demonstrate priming than those associated with structural contexts with longer 

unification chains. I return to this point in greater detail in Chapter 4.  This claim differs from the 

standard accounts of structural priming, which argue that the structural context in which a prime 

occurs does not affect structural priming (Branigan, Pickering, McLean, & Stewart 2006). The 

standard account argues that simply having processed a structural prime increases the likelihood 

of reusing the prime form. Thus, varying the sentence structure itself and varying the position of 

the structural prime or the structural context in which a prime occurs does not matter. There 

should be the same pattern of priming regardless of whether a prime occurs in one context (e.g. 

inside a matrix clause) or another (e.g. inside the internal complements of a verb).  

 The standard account of priming along with the RICE account are explained in greater 

detail in subsequent chapters. Specifically, Chapter 3 addresses the claim about recency, 

structural context, and lexical priming; and Chapter 4 addresses the claim about recency, 

structural context, and structural priming.  
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Appendix 2A: Declarative chunks 

Name Full Chunk Abbreviated Chunk 

S-chunk  

isa   :  S 
  num  :  sg 

   spec  :  DP 
  comp : VP 

           tense  : past/pres 
    finite : finite 

  isa : S 
  spec : DP 
comp : VP 

S-gap-chunk  

 

      isa   :  S-gap 
   num  :  sg 

       spec  :  __ 
  comp : VP 

           tense  : past/pres 
    finite : finite  

       gap: =NP 

                           isa : S-gap 
  spec : __ 

 comp : VP  

       gap : =NP 

DP-the-chunk  

   isa :  DP 
  num  :  sg 

           case :  nom/acc/dat 
   orth  :  the  
   comp :  NP 

isa : DP 
orth: the 

  comp : NP 

NP-king-chunk  

    isa    :  NP 
      case  :  nom 

   num  :  sg 
      orth  :  king 

isa : NP 
  orth: king 

NP-duke-chunk  

   isa    :  NP 
          case  :  nom/acc 

  num  :  sg 
     orth  :  duke  

isa : NP 
   orth: duke 

NP-duchess-chunk  

  isa    :  NP 
 case  :  dat  
 num  :  sg 

          orth  :  duchess  

isa : NP 
        orth: duchess 

NP-rubies-chunk  

    isa    :  NP 
     case  :  acc 
   num  :  pl 

          orth  :  rubies 

isa : NP 
         orth : rubies 

VP-like-chunk  

   isa  :  VP 

       num  :  sg-sg 

      tense  :  pres 

     orth  :  like  

    comp :  DP 

isa : VP 
    orth: like 

    comp : DP 

VP-declare-chunk  

isa :  VP 

       num : sg-sg 

      tense : past   

             orth :  declare  

           comp :  DP/CP 

isa : VP 
          orth: declare 

          comp : DP/CP 
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VP-gap-declare-chunk  

            isa :  VP-gap 

          num : sg-sg 

           tense : past   

                orth : declare  

           comp :  __ 

            gap : =S 

         isa : VP-gap 
          orth: declare 

          comp : __ 

          gap : =S 

VP-promise-chunk  

  isa    :  VP 

      num  :  sg-sg 

      tense  :  past 

            orth  :  promise  

  comp :  DP 

                  :  DP/PP 

 isa : VP 

           orth: promise 

     comp : DP 

                   : DP/PP 

CP-chunk 

  isa : CP 

    num  : sg 

        spec: Comp 

   comp : S  

 isa : CP 

         spec: Comp 

   comp : S 

Comp-that-chunk  

      isa :  Comp 

case: acc 

      orth  :  that 

         isa :  Comp 

          orth  :  that  

RelC-chunk  

      isa : RelC  

     num  : sg 

       spec: RelP  

        comp : S-gap 

      mod : NP 

      isa : RelC  

       spec: RelP  

        comp : S-gap 

      mod : NP 

RelP-who-chunk  

     isa :  RelP  

  num: sg 

            case: nom/acc 

        orth  :  who 

       isa :  RelC  

          orth  :  who  

AdvC-chunk 

      isa : AdvC 

      orth: Adv 

   comp : S 

   mod : S 

           isa : AdvC 

         orth: Adv 

      comp : S 

      mod : S 

Adv-as-chunk  
      isa :  Adv 

       orth  :  as 
         isa :  Adv  

          orth  :  as  
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Appendix 2B: Table of production rules 

Name Production Rule Syntax English Description 

Retrieve S 

(at the initial 

state) 

=goal> 

   [process S] 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : S 

IF the goal chunk is  

    is currently empty, but the control state is to process a  

    sentence     

 

AND IF the retrieval buffer  

    is currently empty 

 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type sentence 

Retrieve S 

(following a 

selector, e.g. 

CompC) 

=goal> 

    isa  :  CP 

    head  :  =comp 

    comp : =S 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : S 

IF the goal chunk is  

    of the type complement clause 

    and it contains an open value for a  complementizer 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type sentence 

Retrieve DP =goal> 

    isa  :  S 

    spec  :  =DP 

    comp : =VP 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : DP 

IF the goal chunk is  

    of the type sentence 

    and it contains an open value for a  DP  

    and it contains an open value for a  VP  

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type determiner phrase 

Retrieve NP =goal> 

    isa  :  DP 

    orth  :  the 

    comp : =NP 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : NP 

IF the goal chunk is  

    of the type determiner phrase 

    and contains the as its head 

    and it contains an open value for a  NP 

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type noun phrase 
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Retrieve VP =goal> 

    isa  :  S 

    spec  :  =DP 

    comp : =VP 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : VP 

IF the goal chunk is  

    of the type sentence 

    and it contains a DP as its specifier 

    and it contains a VP as its complement 

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type verb phrase 

Retrieve CP 

(for internal 

complement of a 

verb) 

=goal> 

    isa    :  VP 

    head  :  V 

    comp : = CP 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : CP 

IF the goal chunk is  

    of the type verb phrase 

    and contains verb as its head 

    and it contains an open value for an CP 

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type complement clause 

Retrieve CP 

(for internal 

complement of a 

noun) 

=goal> 

    isa    :  NP 

    head  :  N 

    comp : =CP 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : CP 

IF the goal chunk is  

    of the type noun phrase 

    and contains noun as its head 

    and it contains an open value for an CP 

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type complement clause 

Retrieve 

Complementizer 

=goal> 

    isa  :  CP 

    head  :  =Comp 

    comp : =S 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : Comp 

IF the goal chunk is  

    of the type complement clause 

    and it contains an open value for a  complementizer 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type complementizer 
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Retrieve RelC =goal> 

    [process relative  

     clause] 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : RelC 

IF the goal chunk is  

    is currently empty, but the control state is to process a  

    relative clause     

 

AND IF the retrieval buffer  

    is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type relative clause 

Retrieve 

Relative 

Pronoun 

=goal> 

    isa  :  RelC 

    spec :  =RelP 

    comp : =S 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : RelP 

IF the goal chunk is  

    of the type relative clause 

    and it contains an open value for an RelP 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type relative pronoun 

Retrieve AdvC =goal> 

  [process AdvC] 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : AdvC 

IF the goal chunk is  

    is currently empty, but the control state is to process an  

    adverbial clause     

 

AND IF the retrieval buffer  

    is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type adverbial clause 

Retrieve Adverb =goal> 

    isa  :  AdvC 

    spec  :  =Adv 

    comp : =S 

     

=retrieval> 

   isa :  nil 

 

==> 

   +retrieval> 

     isa  : Adv 

IF the goal chunk is  

    of the type adverbial clause 

    and it contains an open value for an Adv 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   is currently empty 

 

THEN 

     amend the retrieval buffer 

     to retrieve a chunk that is of type adverbial  

     conjunction 
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Pop S 

 

=goal> 

    [process S] 

 

=retrieval> 

   isa :  S 

   spec: DP 

   comp : VP 

 

==> 

  !pop! 
     isa  : S 

IF the goal chunk is  

    to process a sentence 

     

AND IF the retrieval buffer  

   contains a sentence 

   and the specifier is filled 

   and the complement is filled 

 

THEN 

     pop the content of the retrieval buffer 

Pop S 

(following a 

selector, e.g. CP) 

=goal> 

    isa  :  CP 

    head  :  =comp 

    comp : =S 

     

=retrieval> 

   isa :  S 

   spec: DP 

   comp : VP 

 

==> 

  !pop! 
     isa  : S 

IF the goal chunk is  

    of the type complement clause 

    and it contains an open value for a  complementizer 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   contains a sentence 

   and the specifier is filled 

   and the complement is filled 

 

THEN 

     pop the content of the retrieval buffer 

Pop DP =goal> 

    isa  :  S 

    spec  :  =DP 

    comp : =VP 

     

=retrieval> 

       isa  :  DP 

    orth  :  the 

    comp : NP 

 

==> 

  !pop! 
     isa  : DP 

IF the goal chunk is  

    of the type sentence 

    and it contains an open value for a  DP  

    and it contains an open value for a  VP  

     

AND IF the retrieval buffer  

   contains a determiner phrase 

   and the specifier is filled 

   and the complement is filled 

 

THEN 

     pop the content of the retrieval buffer 

Pop NP =goal> 

    isa  :  DP 

    orth  :  the 

    comp : =NP 

     

=retrieval> 

   isa :  NP 

   head : N 

   comp :nil/filled 

 

==> 

  !pop! 
     isa  : NP 

IF the goal chunk is  

    of the type determiner phrase 

    and contains the as its head 

    and it contains an open value for a  NP 

     

AND IF the retrieval buffer  

   contains a determiner phrase 

   and its head is filled 

   and either does not take a complement or its/ 

     complement is filled 

 

THEN 

     pop the content of the retrieval buffer 
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Pop VP =goal> 

    isa  :  S 

    spec  :  =DP 

    comp : =VP 

     

=retrieval> 

       isa  :  VP 

    head  :  V 

    comp : nil/filled 

 

 

==> 

  !pop! 
     isa  : VP 

IF the goal chunk is  

    of the type sentence 

    and it contains a DP as its specifier 

    and it contains a VP as its complement 

     

AND IF the retrieval buffer  

   contains a verb phrase 

   and its head is filled 

   and either does not take a complement or its/ 

     complement is filled  

 

THEN 

     pop the content of the retrieval buffer 

Pop CP 

(for internal 

complement of a 

verb) 

=goal> 

    isa    :  VP 

    head  :  V 

    comp : = CP 

     

=retrieval> 

    isa  :  CP 

    spec  :  Comp 

    comp : S 

 

==> 

  !pop! 
     isa  : CP 

IF the goal chunk is  

    of the type verb phrase 

    and contains verb as its head 

    and it contains an open value for an CP 

     

AND IF the retrieval buffer  

  contains a complement clause 

   and the specifier is filled 

   and the complement is filled 

 

THEN 

     pop the content of the retrieval buffer 

Pop CP 

(for internal 

complement of a 

noun) 

=goal> 

    isa    :  NP 

    head  :  N 

    comp : = CP 

     

=retrieval> 

    isa  :  CP 

    spec  : Comp 

    comp : S 

 

==> 

  !pop! 
     isa  : CP 

IF the goal chunk is  

    of the type noun phrase 

    and contains noun as its head 

    and it contains an open value for an CP 

     

AND IF the retrieval buffer  

  contains a complement clause 

   and the specifier is filled 

   and the complement is filled 

 

 

THEN 

     pop the content of the retrieval buffer 
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Pop 

Complementizer 

=goal> 

    isa  :  CP 

    spec  :  =Comp 

    comp : =S 

     

=retrieval> 

   isa :  Comp 

   orth: that 

    

==> 

  !pop! 
     isa  : Comp 

IF the goal chunk is  

    of the type complement clause 

    and it contains an open value for a Comp 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   contains a complementizer 

   and its head is filled 

 

THEN 

     pop the content of the retrieval buffer 

Pop RelC =goal> 

    [process RelC] 

     

=retrieval> 

    isa  :  RelC 

    spec  :  RelP 

    comp : S 

 

==> 

  !pop! 
     isa  : RelC 

IF the goal chunk is  

    is to process a relative clause     

 

 

AND IF the retrieval buffer  

    contains a relative clause 

    and its specifier is filled 

    and its complement is filled 

 

THEN 

     pop the content of the retrieval buffer 

Pop Relative 

Pronoun 

=goal> 

    isa  :  RelC 

    spec  :  =RelP 

    comp : =S 

     

=retrieval> 

   isa :  RelP 

   orth: who 

 

==> 

  !pop! 
     isa  : RelP 

IF the goal chunk is  

    of the type relative clause 

    and it contains an open value for an RelP 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   contains a relative pronoun 

   and its head is filled (e.g. who) 

 

THEN 

     pop the content of the retrieval buffer 

Pop AdvC =goal> 

  [process AdvC] 

     

=retrieval> 

    isa  :  AdvC 

    spec  :  Adv 

    comp : S 

==> 

  !pop! 
     isa  : AdvC 

IF the goal chunk is  

    is to process an adverbial clause     

 

AND IF the retrieval buffer  

    contains an adverbial clause 

    and its specifier is filled 

    and its complement is filled 

 

THEN 

     pop the content of the retrieval buffer 
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Pop Adv =goal> 

    isa  :  AdvC 

    spec  :  =Adv 

    comp : =S 

     

=retrieval> 

   isa :  Adv 

   orth: as 

 

==> 

  !pop! 
     isa  : Adv 

IF the goal chunk is  

    of the type adverbial clause 

    and it contains an open value for an Adv 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   contains and adverbial conjunction 

   and its head is filled (e.g. as) 

 

THEN 

     pop the content of the retrieval buffer 

Push S 

 

=goal> 

    [process S] 

 

=retrieval> 

   isa :  S 

   spec: =DP 

   comp : =VP 

 

==> 

  !push! 
     isa  : S 

IF the goal chunk is  

    to process a sentence 

     

AND IF the retrieval buffer  

   contains a sentence 

   and the specifier is unspecified 

   and the complement is unspecified 

 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 

Push S 

(following a 

selector, e.g. CP) 

=goal> 

    isa  :  CP 

    head  :  =comp 

    comp : =S 

     

=retrieval> 

   isa :  S 

   spec: =DP 

   comp : =VP 

 

==> 

  !push! 
     isa  : S 

IF the goal chunk is  

    of the type complement clause 

    and it contains an open value for a  complementizer 

    and it contains an open value for an S 

     

AND IF the retrieval buffer  

   contains a sentence 

   and the specifier is unspecified 

   and the complement is unspecified 

 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 

Push DP =goal> 

    isa  :  S 

    spec  :  =DP 

    comp : =VP 

     

=retrieval> 

       isa  :  DP 

    orth  :  the 

    comp : =NP 

 

==> 

  !push! 
     isa  : DP 

IF the goal chunk is  

    of the type sentence 

    and it contains an open value for a  DP  

    and it contains an open value for a  VP  

     

AND IF the retrieval buffer  

   contains a determiner phrase 

   and the specifier is filled 

   and the complement is unspecified 

 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 
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Push NP =goal> 

    isa  :  DP 

    orth  :  the 

    comp : =NP 

     

=retrieval> 

   isa :  NP 

   head : noun 

   comp : nil/=CP 

 

==> 

  !push! 
     isa  : NP 

IF the goal chunk is  

    of the type determiner phrase 

    and contains the as its head 

    and it contains an open value for a  NP 

     

AND IF the retrieval buffer  

   contains a determiner phrase 

   and its head is filled 

   and its complement is unspecified 

 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 

Push VP =goal> 

    isa  :  S 

    spec  :  =DP 

    comp : =VP 

     

=retrieval> 

       isa  :  VP 

    head  :  V 

    comp : =CP 

 

==> 

  !push! 
     isa  : VP 

IF the goal chunk is  

    of the type sentence 

    and it contains a DP as its specifier 

    and it contains a VP as its complement 

     

AND IF the retrieval buffer  

   contains a verb phrase 

   and its head is filled 

   and its complement is unspecified 

 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 

Push CP 

(for internal 

complement of a 

verb) 

=goal> 

    isa    :  VP 

    head  :  V 

    comp : = CP 

     

=retrieval> 

    isa  :  CP 

    spec  :  =Comp 

    comp : =S 

==> 

  !push! 
     isa  : CP 

IF the goal chunk is  

    of the type verb phrase 

    and contains verb as its head 

    and it contains an open value for an CP 

     

AND IF the retrieval buffer  

  contains a complement clause 

   and the specifier is unspecified 

   and the complement is unspecified 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 

Push CP 

(for internal 

complement of a 

noun) 

=goal> 

    isa    :  NP 

    head  :  N 

    comp : = CP 

     

=retrieval> 

    isa  :  CP 

    spec  : Comp 

    comp : =S 

==> 

  !push! 
     isa  : CP 

IF the goal chunk is  

    of the type noun phrase 

    and contains noun as its head 

    and it contains an open value for an CP 

     

AND IF the retrieval buffer  

  contains a complement clause 

   and the specifier is filled 

   and the complement is unspecified 

 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 
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Push RelC =goal> 

    [process RelC] 

     

=retrieval> 

    isa  :  RelC 

    spec  :  =RelP 

    comp : =S 

 

==> 

  !push! 
     isa  : RelC 

IF the goal chunk is  

    is to process a relative clause     

 

 

AND IF the retrieval buffer  

    contains a relative clause 

    and its specifier is unspecified 

    and its complement is unspecified 

 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 

Push AdvC =goal> 

  [process AdvC] 

     

=retrieval> 

    isa  :  AdvC 

    spec  :  =Adv 

    comp : =S 

==> 

  !push! 
     isa  : AdvC 

IF the goal chunk is  

    is to process an adverbial clause     

 

AND IF the retrieval buffer  

    contains an adverbial clause 

    and its specifier is unspecified 

    and its complement is unspecified 

 

THEN 

     push the content of the retrieval buffer into the problem 

     state buffer 
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3 CHAPTER  

 

 

 

Lexical Priming 
 

The three most important factors in buying a home are: location, location, 

location! ~ Unknown 

 

 

During language processing, speakers and listeners search through memory to find the right word 

at the right time. The ability to locate the correct word depends, in part, on how closely it 

matches the needs of the current discourse. For example, in discussions about pets, the word cat 

is found and retrieved more quickly than the word sage, but in discussions about herbs, the sage 

is more likely than cat. However, more than just the current discourse context affects 

retrievability.  

 A form’s retrievability is also affected by its ACTIVATION WEIGHT, which is a numerical 

value that reflects the history of use of the form (see Chapter 2, section 3). Forms with higher 

levels of activation, or greater activation weights, are more likely to be retrieved than those with 

lower levels or less weight. The reason for this tendency is that more active forms are easier for 

the processor to locate and, hence, retrieve and use for processing. One crucial factor in 

determining a form’s activation weight is the recency of its use. Forms that have recently been 

encountered have higher activation weights than those that have not been recently encountered. 

For instance, at this moment, the herb sage is probably more active than thyme due to sage’s 

recent mentioning. When a form has been recently encountered (processed), its activation weight 
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is higher, and it is more likely to affect subsequent linguistic behavior. This general effect, which 

I call the RECENCY EFFECT,  has been found in numerous tasks in which recently-encountered 

forms influence subsequent performance (e.g. Bock 1986a,b; Bjork & Whitten 1974; Deese & 

Kaufman 1957; Murdock 1962; Davelaar, Goshen-Gottstein, Haarmann, Ashkenazi, & Usher 

2005; Howard & Kahana 1999; McNamara 2005; Pickering & Branigan 1998). The RICE 

hypothesis accepts this general claim and adds one stipulation, namely that recency effects are 

mediated by how the structural context in which the prime occurs was processed. 

Recent Interaction with Context Effect (RICE) 

The effect of a recently-encountered linguistic form on subsequent behavior is 

mediated by the way its structural context was processed. 

 

In this chapter, I test this hypothesis using lexical priming, specifically using a form of 

similarity-based lexical priming called IDENTITY or REPETITION priming (henceforth identity 

priming). Identity priming refers to the processing facilitation an item receives because the same 

lexical item was recently encountered, meaning that the prime and target are the same. This form 

of priming differs from other forms of lexically-based priming, such as semantic priming, as is 

described in greater detail in section 1.  

According to the standard account of priming and recency effects, the reuse of recently 

encountered words should not be affected by the processing of the larger structural context in 

which the prime occurred. Most broadly, this account predicts that there should not be some 

systematic difference among lexical primes based solely on their larger structural context. A 

generous interpretation of this account would potentially allow for some elements of “context” 

(e.g. pragmatic, discourse, or semantic context) to facilitate priming, but the strictest 
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interpretation would rule out any facilitation that corresponds to systematic structural 

differences. However, there is research suggesting that this claim in its strongest interpretation is 

not correct. Antecedents that occur in the focus position of a focus construction (e.g. it-clefts and 

wh-clefts such as (1) and (2) below) facilitate response times at their anaphoric phrases (Birch & 

Garnsey 1995; Clifton, Kennison, & Albrecht 1997; McKoon, Ratcliff, Ward, & Sproat 1993; 

Nicol & Swinney 1989; Spivey, Tanenhaus, Eberhard, & Sedivy 2002; Sturt 2003; Swinney 

1979; van Berkum, Brown, & Hagoort 1999). For examples (1) and (2) below, the antecedents in 

the focus position (bolded) lead to quicker responses at the target item than those in the 

deemphasized position (italicized) (Almor 1999).  

(1) Focus item in the scope of an It-cleft  
 It was the robin that ate the apple.  

  

 Continuation: The bird/The fruit… 

 

(2) Focus item in the scope of a Wh-clef  
 What the robin ate was the apple.  

 

Continuation: The bird/The fruit… 

 

What this research suggests is that items that occur in focused, ‘emphasized’ positions, i.e. forms 

occurring in structurally and pragmatically foregrounded positions, affect subsequent linguistic 

behavior more than those in ‘deemphasized’ positions, i.e. forms occurring in structurally 

subordinated, pragmatically backgrounded positions in cleft sentences. These findings appear to 

conflict with the standard account of priming, which claims structural context is irrelevant.  

However, the focus effect is inconsistent. Research suggests that the focus effect is not as 

stable as assumed and that it may be sensitive to particular demands of task (Almor & Eimas 



117 

 

2008; Birch, Albrecht, & Myers 2000; see also Chapter 2, section 1).  Items in focus positions 

((3) below) do not facilitate priming any more than those in neutral contexts (i.e. contexts that 

are not part of focus constructions such as it-clefts or wh-clefts) ((4) below). 

(3) Antecedent in focus position 

It was the mayor who refused to answer a reporter’s question. 

 

(4) Antecedent in neutral position 

The mayor refused to answer a reporter’s question. 

 

Focus position in and of itself may not affect the retrievability of specific words. Rather, it may 

be something about being in deemphasized positions or the task demands of some of the 

previous focus studies driving the effect.  

 Given that the source and the actual implications of the focus effect are unclear, the 

standard account that structural context doesn’t matter may still hold. There is no clear evidence 

that supports the claim that structural context affects the retrievability of forms.  The standard 

account contends that when time is held constant (e.g. the number of milliseconds or syllables 

between the prime and target are constant), then the primes should show the same priming 

behavior regardless of where in the larger structural context they occur.  

 The experimental results discussed below provide evidence against this claim. There is a 

difference between the retrieval of prime forms that occur in the internal complements of nouns 

(henceforth noun complement clauses, e.g. the underlined portion of (5)) and the retrieval of 

forms that occur in the internal complements of verbs (henceforth verb complement clauses, e.g. 

(6)), in relative clauses (e.g. (7)) or in matrix clauses (e.g. (8)).  
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(5) Noun complement clause 

Amanda declared the fact that the lawyer lived in Washington. 

 

(6) Verb complement clause 

Amanda declared that the lawyer lived in Washington. 

 

(7) Relative clause 

Amanda liked the lawyer who lived in Washington. 

 

(8) Matrix clause 

Amanda worked in Virginia, and the lawyer lived in Washington. 

 

Ultimately, I argue that this difference in priming stems from differences in the way forms are 

unified into larger structural units. UNIFICATION refers to the merger of two linguistic forms to 

generate a new, equally as complex or more complex form (Chapter 2, section 3.4). Each 

unification of one linguistic form with another form counts as a UNIFICATION CYCLE. Unification 

cycles act as a form of bookkeeping, a way of counting and tracking the steps used to process a 

linguistic unit such as a clause or sentence. I contend that the number of unifications and how 

they are joined into larger units affect the retrievability of a prime at the target.  

 Before delving into the interaction between the pattern of unifications and lexical 

priming, in section 1, I specify the type of lexical priming I am considering. In section 2, I 

discuss the different predictions of the standard account of priming (SAP) and the RICE-inspired 

account of priming (PRICE) as they pertain to lexical priming. Section 3 presents a lexical 

priming study that tests these predictions, and section 4 discusses the results. Sections 5 and 6 

present a discussion of the findings and the conclusions respectively.  
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1.  Defining lexical priming 

LEXICAL PRIMING  refers to the facilitation a word receives because it (or a related word) was 

recently processed. The term ‘lexical priming’ has been used to describe facilitation effects such 

as lexical repetition (e.g. quicker processing of and more frequent reuse of the same word) and 

semantic priming (e.g. quicker processing of semantically-related words) (e.g. Baayen, Dijkstra, 

& Schreuder 1997; Clahsen & Featherston 1999; Friederici, Steinhauer, & Frisch 1999; Glosser 

& Friedman 1991; Hutchinson 2003; Lucas 2000; Ferrand & New 2003; Perea & Rosa 2000, 

2002; Rips, Shoben, & Smith 1973; see McNamara 2005 for a review). I take the former 

definition: lexical priming refers strictly to priming for forms of the same lemma. For example, 

lexical priming includes facilitation for cats after the word cat but not for semantically related 

words such as kitten, pet, or dog. I consider semantic priming to be a separate form of priming 

despite its similarity to other lexically-based forms of priming.  

 1.1 Forms of lexical priming 

 Generally speaking, there are three levels of lexical processing that lead to lexical 

priming in the broad sense (Allen & Badecker 2002; Dell & O’Seaghdha 1991; Hoey 2005; 

Levelt, Roelofs, & Meyers 1999; Levelt, Schriefers, Vorberg, Meyer, Pechmann, & Havinga 

1991; McNamara 2005):  

i. the ‘semantic’ or conceptual level (the lemma walk is associated with the concept of 

MOVEMENT, LEGS, etc.);  

 

ii. the lemma level (e.g. the abstract lexical properties and morphosyntactic features of a 

word); and  

 

iii.  the lexeme level (e.g. the specific, structural form of the word). 
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Allen and Badecker (2002) argue that lexical priming arises when two forms access the same 

lemma entry. Thus walked primes walks and walking. However, some primes appear to inhibit 

responses to targets that share the same lemma entry. For instance, irregular verbs (give�gave) 

do not show the same amount of priming as regular verbs (walk�walked). Allen and Badecker 

contend that forms that have a great deal of surface similarity (e.g. they have a great deal of 

orthographic overlap as in give and gave) serve to inhibit one another in priming tasks, despite 

their shared lemma. Because of this, they argue that the lemma and lexeme level are distinct and 

affect behavior separately.
1
 In Chapter 2, section 3.1, I presented Figure 2.1, which depicts the 

lexicon as having nodes at three levels: the semantic, lemma, and phonological levels. Below, I 

expand these levels to clarify the differences between the lemma and lexeme level, building off 

of Allen and Badecker’s (2002) model. Assume that we have a representation in memory similar 

to that in Figure 3.1 below.  

                                                 
1
 This two-level distinction based on structural or surface similarity (e.g. the difference between the lemma and 

lexeme levels) is found at other levels of information processing beyond just linguistic processing. Forbus, Gentner, 

and Law (1995) argue that retrieval from long-term memory is a two-step process. At the early stages, surface 

similarity narrows the set of possible choices. Then structural similarity delimits the set even more. As such, the two 

types of information are represented separately and affect behavior separately. 
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Figure 3.1: Four levels of cat according to Allen and Badecker’s (2002) model 

CAT

PETFELINESemantic

Lemma

Phonological

Lexeme -scat

/kQts/

plural

/kQt/

DOG

 
Here we see that the lemma CAT (all caps) is connected to semantic information (bold and all 

caps) and to different lexemes (normal font), which are connected to their phonetic realizations. I 

refer to these levels as the lemma, semantic, lexeme, and phonological levels respectively. The 

lexeme level contains forms based in lexical representations whereas those at the lemma are 

considered modality-neutral and more abstract (Allen & Badecker 1999, 2002). 

 As discussed in Chapter 2, once a form is encountered (e.g. the processor hears /kQts/), 

activation spreads throughout the network, as shown in Figure 3.2. This spreading activation 

leads also to the activation of semantically-related forms (e.g. DOG) as shown by the lesser 

bolded line and circle leading from PET to DOG. 
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Figure 3.2: Spreading activation from cat 

CAT

PETFELINESemantic

Lemma

Phonological

Lexeme -scat

/kQts/

plural

/kQt/

DOG

 
  

One commonly-noted difference between SIMILARITY-BASED PRIMING, which refers to 

lemma- or lexeme-level priming, and SEMANTICALLY-BASED PRIMING, which refers to semantic-

level priming, is the apparent difference in the persistence of their priming effects. Many contend 

that the effects of similarity-based priming (such as identity priming) can last anywhere from 

minutes to months, whereas the effects of semantically-based priming may fade as soon as the 

sentence has been processed (e.g. Bentin & Feldman 1990; Bentin & Moscovitch 1988; Bowers 

2000; Jäger & Rosenbach 2008a,b; McClelland & Rumelhart 1986; Morton 1969; McNamara 

2005; Ratcliff & McKoon 1994; Scarborough, Cortese, & Scarborough 1977; Sloman, Hayman, 

Ohta, Law, & Tulving 1988; Tenpenny 1995; but see Becker, Moscovitch, Behrmann, & 
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Joordens 1997; Joordens & Becker 1997 for arguments for long-term semantic priming). One 

reason for the possible differences may be the nature of the relationship between the prime and 

target exhibited by both types of priming. In semantic priming, the associative or conceptual link 

between the prime (e.g. an antecedent) and a target (e.g. an anaphor) is being primed. The use of 

one form (e.g. a specific lemma) activates a concept, and this activation is assumed to activate 

other forms that are also linked to the primed concept. For example, processing the phrase “the 

tabby” can prime the processing of “the cat.”  However, the link may be discourse-specific.  

 Anaphor resolution and the reactivation of antecedents demonstrate this type of 

discourse-specific association and sensitivity to current discourse-context needs (Cowles & 

Garnham 1995; Cowles, Walenski, & Kluender 2007; Gernsbacher 1989; Love & Swinney 1996; 

Nicol 1993; Nicol, Fodor, & Swinney 1994). For example Cowles et al. (2007) presented 

participants with short stories such as (9): 

(9) Example from a pronoun-resolution anaphora lexical priming study  

(Cowles et al. 2007) 

Setup: 

a) Anne wanted to see the new movie with Sarah. 

b) So, Anne called Sarah. 

Target: 

c) But later that night, she couldn’t go to the movie after all. 

 

Participants listened to the setup and target sentences and then read the name of one of the 

participants (e.g. Anne or Sarah) when it appeared on the computer screen in front of them. 

Cowles et al. took shorter speech onset latencies as evidence of priming. Thus, if she in (9c) 

reactivated (primed for) Anne, then there should be shorter latencies in the pronunciation of Anne 

relative to the pronunciation of Sarah during the trial. They found an effect of priming such that 
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depending on discourse features (e.g. topicality and prominence), she primed for Anne more than 

for Sarah. These sort of discourse-context links need to be flexible to allow for quick retrieval in 

the short term and also quick deactivation so that discourse referents can wax and wane and new 

antecedent-pronoun pairs can be established. However, in similarity priming, the connection 

between a form and its lemma or lexeme is being tested. The connection between a lemma (e.g. 

walk) and its instantiations (e.g. walked, walking, or walks) persists beyond the current text and 

as such may demonstrate long-term effects and less dependence on structural context.  

 Although the possible differences between the persistence of these two types of priming 

should be enough to motivate testing them separately, there is one additional reason to focus on 

similarity-based priming (henceforth lexical priming) rather than semantically-based priming 

(henceforth semantic priming). Research on the two forms of priming has often explored 

different phenomena. Of particular interest to us are the ways the two forms of priming have 

been used to explore the effects of structural context on the different forms of priming behavior.  

 Semantic priming has been used extensively to test context effects on the priming of 

semantically-related word pairs, anaphor resolution, and filler-gap dependencies (Almor 1999; 

Birch, Albrecht, & Myers 2000; Birch & Garnsey 1995; Clifton, Kennison, & Albrecht 1997; 

Cowles, Walenski, & Kluender 2007; Foraker & McElree 2007; Hofmeister 2008; Love & 

Swinney 1996; Morris & Folk 1998; Nicol 1993;  Nicol, Fodor, & Swinney 1994; Nicol & 

Swinney 1989; Sturt 2003; Swinney 1979). These studies generally find that context heightens 

semantic priming. For example, being in the focus position of a cleft sentences leads to quicker 

performance in certain tasks (see Chapter 2, section 1 for a fuller discussion). However, research 
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on the effects of structural context on lexical priming lags behind, although there is research to 

suggest that structural context may not affect lexical discrimination (Birch et al. 2000; Connine, 

Blasko, & Wang 1994, see also Chapter 2, section 1) and, thus, may not affect lexical priming. 

Because semantic priming may be more transitory, as mentioned above, it may also depend more 

heavily on the current structural context for priming whereas the more stable, lexical priming 

may be independent of the structural context.  

 In this chapter, I explore how structural context affects lexical priming (i.e. form-based 

priming). To do so, I probe the activation of a word by using identity priming in which the prime 

and target are the same word in the same form (i.e. same tense). Specifically, participants hear a 

sentence containing a prime word (e.g. bought) and then determine whether the sentence they 

just heard contained the word they see on a computer screen (e.g. the same word bought). This 

type of identity priming task should activate the lexeme-level and the lemma-level (as well as the 

semantic level), giving the prime and target the greatest chance of facilitation (Luckatela, Savic, 

Urosevic, & Turvey 1997).  

 

2. The activation-based model account for lexical priming effects   

As discussed in Chapter 2, activation-based models of language processing assume that  

(i)  all linguistic forms can be represented as nodes in long-term memory,  

 

(ii)  that there are links among these nodes, and  

 

(iii) that both the nodes and the links have activation weights which reflect the history of  

 use for the node or link.  
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During language processing, the processor searches memory for a particular form (e.g. a word), 

and these activation weights come into play. Ultimately, there are three factors that determine 

which word is retrieved: relation to context, activation, and random noise. I mention this third 

factor only to note that it can affect retrieval, and I do not consider it further.  

 The first factor, RELATION, is determined by the weighted associations between the 

elements associated with the current goal and the connections between these elements and a 

particular chunk (see Chapter 2, section 3.3 for a fuller discussion of relevance and the activation 

of chunks).  The more elements associated with a goal, the less weight each element receives. 

For example, previous research has found that the ability to verify facts about a referent (e.g. 

whether John plays soccer) depends on how many other facts you know about the same referent 

(John plays tennis, likes Mozart, studies linguistics, etc.) (e.g. Anderson 1974). The more facts 

one knows, the longer it takes to verify a particular fact. The explanation is that the number of 

facts associated with the referent compete with one another, thereby attenuating the activation of 

each individual fact. At the same time, the more elements in the context pointing toward the 

same chunk, the greater the weight for the chunk in question. For example, some words are 

likely to co-occur (e.g. “Mickey” and “Mouse”) such that the occurrence of one may boost the 

activation of the other. Although this is a relevant factor for determining activation weights, 

Anderson & Schuun (2000) contend that it is the least important aspect at least as far as learning 

is concerned. Still, others have found that the co-occurrence of words (e.g. baby-hospital versus 

baby-concrete) affects retrieval and priming behavior (e.g. McKoon & Ratcliff’s (1992) 

‘compound cue’ account of semantic priming). Thus, we have two factors to consider: (i) how 
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many chunks are associated with a particular context and (ii) the strength of the link between two 

chunks. 

 The first of these factors reflects the current state of the processor by determining how 

much weight each element should receive given the number of elements needed for the 

processing of the sentence. The more elements, the less activation available for each element. 

The second factor reflects the history of use of one chunk given the use of another chunk, 

thereby capturing an element of contextual priming associated with the co-occurrence of two 

chunks. The stronger the links between two elements, the greater the activation boost a chunk 

receives. These two factors estimate the amount of activation a chunk receives from its context.  

Of particular interest to us is the amount of interference that can arise from competing 

chunks in the context. This interference can lead to potentially slower or less accurate 

performance (e.g. Lewis & Vasishth 2005, Van Dyke & Lewis 2003, and Van Dyke & McElree 

2006). Interference can arise when many forms are vying for limited cognitive resources or when 

the links between forms are ambiguous (e.g. they point to many possible other forms). 

Interference can be one of two types: proactive or retroactive interference. Proactive interference 

refers to difficulty integrating incoming information due to old information (e.g. trying to 

remember where you parked today when you normally park in a different location), and 

retroactive interference refers to difficulty re-accessing old information due to new information 

(e.g. trying to remember an old phone number after having memorized a new one). Either form 

of interference makes it more difficult for the processor to retrieve chunks from memory (Lewis, 

Vasishth, & Van Dyke 2006). 
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Another factor that affects retrieval is the word’s ACTIVATION WEIGHT, which is 

determined by a combination of the word’s base-level activation and any boost in activation it 

received from recent processing minus a function of decay (Chapter 2, section 3.3.2). This 

‘recent processing’ can refer to the processing of the same word, in which case the weight 

adjustment is a direct consequence of the form’s use, or from the processing of a semantically-

related word, in which case the adjustment is a consequence of spreading activation. Regardless, 

after a word’s activation weight is adjusted and the processor proceeds to the next phase (e.g. it 

begins to retrieve the next word), the activation boost for the word begins to decay at a constant, 

set rate. For example, say someone heard the sentence “The child saw the cat.” After the 

processing of the word cat, the form cat’s representation in memory receives a boost, as shown 

in Figure 3.3 below. 

Figure 3.3: Activation and decay of cat 

 

CAT

CAT

CAT

CATCAT

...saw the cat.”

tt-1 t+1 . . . . t+n

Period of facilitation
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Time t denotes the point at which the representation receives its activation boost. Once the 

processor has moved on to process the next word (t+1), the activation boost for cat begins to 

decay at a constant rate, denoted by the decreasing size of the nodes and the slope above. While 

this decay process is taking place (t+1…t+n), the activation weight for the word is still higher than 

it would have been had it not been recently processed, giving it a slight advantage over 

competing alternative forms. During the period in which the activation boost is waning, 

processing of cat is facilitated. This interaction of retrieval, activation boost, and decay leads to 

the recency effects in priming as discussed in Chapter 2.
1
 At the next point in processing when a 

choice must be made between the retrieval of the recently-used word and an acceptable alternate, 

the three factors of relevance, activation, and noise come into play again. However, this time the 

recently-retrieved word may have a distinct advantage over other, possible forms due to its 

recent boost in activation. This ‘heightened activation’ is the source of the recency effect. 

2.1 Comparing the accounts  

 The general assumption about the effects of recent processing applies both to the standard 

account of lexical priming and the RICE account of lexical priming. Where the two accounts 

differ is in how they factor in the processing of the larger structural context in which the prime 

word occurs. The standard account predicts that the retrievability of a prime form is not affected 

by the processing of the structural context in which the word occurs. By the standard account, 

only recency and the amount of decay matters (Bentin & Moscovitch 1988; Ratcliff, Hockley, & 

                                                 
1
 Keep in mind that, even though the activation boost decays over time, there is a cumulative or residual effect of the 

activation boost, meaning that there is a gradual accrual of weight that ultimately raises the base-level activation 

weight for the word. 
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McKoon 1985; Scarborough et al. 1977). The onset of decay depends, in large part, on a form’s 

linear position, so primes that occur in the same sentence position (e.g. sentence final) should be 

equally as “recent” regardless of whether they were in matrix position or embedded in a noun or 

verb complement clause. The Standard Account of Priming (SAP) can be best summarized in the 

following way: 

Standard Account of Priming (SAP) 

Having recently encountered a linguistic form increases the likelihood of that 

form’s subsequent reuse. 

 

This hypothesis predicts an effect of time only. Structural differences between the contexts in 

which the prime appears are irrelevant. For example, in the sentences below, the prime cat 

occurs in the same position for all the sentence types. In these sentences, the number of words 

(i.e. zero) and the amount of time (as denoted by the ellipsis) is the same across all contexts, 

meaning that all the instances of cat occur the same amount of time away from the target. 

Furthermore, in these examples, cat occurs approximately the same number of words away from 

the beginning of the sentence. 

Table 3.1: Structural context and priming in the standard account 

Sentence type  Prime Delay Target 

 

Matrix clause  

 

I saw the dog, and the child saw the cat. 

 

. . . . . . . . 

 

CAT 

Relative clause   We both  know the child   who saw the cat. . . . . . . . . 
 

CAT 

Verb complement 

clause 
We both know that the child saw the cat. 

 

. . . . . . . . 
 

CAT 

Noun complement 

clause 

 We both know the fact that the child saw the cat. . . . . . . . . CAT 
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According to the standard account, the primes in each sentence type begin their decay at the 

same time regardless of their structural position, and the amount of decay is equal across types, 

as shown above by the bracket ‘delay’ section. The SAP contends that encountering a word 

increases the probability of its reuse as long as the target occurs before the prime form’s 

activation boost has fallen beneath some threshold. There is no mediating factor of context. How 

the structural context of the prime was processed does not affect priming in general. In contrast, 

the RICE hypothesis claims that the structural context of the prime matters. 

 The RICE hypothesis stems from the assumption that different structural contexts lead to 

different patterns of processing. These different patterns of processing arise from patterns of 

subgoals generated during processing. For example, the processor may generate the subgoal of 

processing a relative clause or processing a matrix clause. Although these two clauses may 

ultimately be part of the same sentence, they are distinct goals with distinct subgoal structures. 

During processing, the processor generates separate unification chains that reflect these subgoal 

structures (see Chapter 2, section 3.4 for a discussion of unification operations and the formation 

of unification chains). These unification chains reflect the processing of different structural 

contexts, and ultimately the features of the chains affect the accessibility of particular forms that 

occur in the chains. Depending on features of the unification chain (e.g. length), the prime is 

more or less easily retrieved.  

 According to activation-based models, such as the one I presented in Chapter 2, the 

retrieval of a linguistic form is affected by its total activation and its relation to the context. A 

form’s activation level is a function of its base level, which reflects its entire history of use, and 
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any boost from recent processing minus an element of decay.  The context can buttress a form’s 

activation when other elements linked to a form occur in the context. At the same time, the 

context can undermine the activation of a form if there are too many elements associated with the 

current goal. This is where the features of unification chains come into play. 

 The model of language processing presented in Chapter 2 suggests that the structural 

context of a prime affects subsequent behavior (e.g. the speed and accuracy of a word’s retrieval) 

by mediating the amount of priming a form receives. Some structural contexts have fewer 

elements (e.g. fewer words that need to be unified) than others.  The chunks used in a sentence 

are associated with unification chains. Two sentences may have the same total number of chunks 

but differ in how these chunks are associated to one another. Specifically, chunks are grouped 

into larger units, and these units reflect unification chains. The unification chains act as retrieval 

structures, and when retrieved, all of the chunks associated with the chain are retrieved.  For 

example, say the processing of a sentence results in tow unification chains, one associated with 

four chunks and one associated with six chunks. During subsequent processing, the processor 

retrieves the chain with the four chunks to verify whether a particular word occurred in it. The 

processor then needs to determine the relations among the four chunks. However, if the 

processing of the sentence only resulted in one chain and the chain associated with ten total 

chunks, then during subsequent retrieval, the processor would need to determine the relations 

among all ten of the chunks. The more words within the chain, the greater the possible 

processing interference (I return to this in section 5). 
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As the number of elements associated with a unification chain increases, the amount of 

cognitive resources any particular element receives decreases. At the point of a subsequent 

retrieval, the processor must retrieve the entire unification chain that the prime is associated with.  

When working memory must retrieve larger unification chains to search for a particular form, 

processing slows down and/or becomes less accurate. Processing differences can arise during the 

initial processing of a sentence (e.g. more elements in the context makes it harder for the 

processor to process each successive element) or at subsequent retrieval of the sentence (e.g. 

more elements in the context makes it harder for the processor to sort among them). Thus, 

processing difficulties due to structural context can arise during either initial processing or 

subsequent retrieval of a sentence and its forms. The current study does not attempt to 

distinguish between these two possibilities. However, I contend that if there are problems at 

either point in the processing, priming should decrease. 

 The current study is a step toward asking whether structural context affects priming at all. 

In the present chapter, I test the basic hypothesis that it does and the more specific claim stated 

below: 

Priming According to RICE (PRICE) 

The processing of both a prime form and its structural context affects how the 

form is represented, and differences in these representations affect subsequent 

priming behavior. 

 

2.2 Predictions of the SAP and PRICE       

Both the SAP and PRICE accounts contend that recency matters. Having recently 

processed a linguistic form facilitates reuse of that same form. If a speaker processes a specific 

word, she is primed to respond more quickly to that word in a subsequent task than if she hadn’t 
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recently processed it. Both SAP and PRICE maintain that this facilitation should persist as long 

as the activation weight keeps the primed form more active than competing forms. In other 

words, there should be priming until decay has caused the activation weight for the prime form 

to fall beneath some threshold. Where the two accounts differ is in whether they predict that the 

structural context of a prime can also affect the retrieval of the prime. The SAP states that 

structural context does not affect lexical priming. PRICE states that it does. RICE  proposes that 

structural context mediates recency effects. PRICE claims that the features of the unification 

chains that the prime is associated with affect priming behavior: the more elements associated 

with the chain, the less priming for the forms associated with the chain. 

 

3. Experiment: Lexical priming from different structural contexts 

This experiment was designed to determine whether the reactivation of words is affected by the 

structural context in which the words recently occurred. To determine the ease of reactivation, I 

used response times in an identity priming task. The assumption is that the faster the response, 

the quicker the retrieval. Recent processing of a form (e.g. a word) should facilitate subsequent 

retrievals of the form at least until its activation boost wanes and the form’s activation weight 

drops. If the SAP is correct, only the amount of decay affects priming, and this decay is not 

affected by the structural context of the prime. Thus, all structural contexts lead to equal amounts 

of priming. If PRICE is correct, the features of the structural context that the prime is associated 

with (e.g. the unification chain’s length and the number of chunks associated with it) affect 

priming. Specifically, primes that are associated with structural contexts that contain more 
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chunks show less priming than those that occur in other structural contexts with fewer chunks, 

even when the time between the prime and target is held constant. 

 The experiment presented here used a cross-modal priming design in which participants 

listened to sentences and then verified whether a word on the computer screen did or did not 

occur in the sentence. Cross-modal priming has been used widely in research that explores the 

activation of words or concepts. In these experiments, participants hear a sentence read aloud and 

then perform a lexical decision, naming, or probe recognition task (e.g. Allen & Badecker 2002; 

Boland, Tanenhaus, Garnsey, & Carlson 1995; Callahan, Shapiro, & Love 2008; Clahsen & 

Featherston 1999; Connine, Blasko, & Wang  1994; de Goede 2007; Love & Swinney 1996; 

Nakano, Felser, & Clahsen 2002; Nicol, Fodor, & Swinney 1994; Shapiro, Oster, Garcia, 

Massey, & Thompson 1999; Wester, de Goede, Bastiaanse, Shapiro, & Swinney 2004). By using 

cross-modal priming, I tried to avoid (i) purely visual or orthographical priming, which could 

arise from the presentation of strictly written material, and (ii) effects that may arise due to 

similarity-based priming’s sensitive to modality (Allen & Badecker 2002). 

3.1 Experimental items  

 For the experimental items,
1
 the prime and probe word was always a dative verb in the 

past tense (such as the prime word bolded in (10) below). The prime was followed by two 

definite noun phrases (underlined below). 

 

(10)  The manager left the request, and the secretary bought the supplies for the 

owner. 

 

 

                                                 
1
 Appendix 3A contains all the experimental items used in this study. 
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Each of the noun phrases was three syllables long, and one occurred in a prepositional phrase. 

Thus, the probe verb occurred seven syllables before the end of the sentence.
1
  

 A total of eight target verbs were used: buy, offer, sell, show, promise, hand, issue, and 

pass. All of the verbs were presented in the past tense in both the prime sentences and the target 

task. There were four scenarios for each of the verbs, meaning that each verb occurred with four 

different sets of agents and objects. An example of two different scenarios for the verb bought is 

shown in (11) and (12).  

(11) Matrix prime: Scenario 1 
The manager left the request, and the secretary bought the supplies for the 

owner. 

 

(12) Matrix prime: Scenario 2 

The reporter smiled, and the agent bought the diamonds for the singer. 

 

For each scenario, four sentence types were constructed as shown in Table 3.3. The structural 

context of the prime (i.e. matrix clause, noun complement clause, verb complement clause, and 

relative clause) are underlined beginning with the subordinator (e.g. the complementizer that) if 

there is one. The prime word is bolded. 

Table 3.2: Example of four versions of one scenario 

Context Sentence 

Matrix clause The manager left the request, and the secretary bought the supplies for the owner. 

Noun complement 

clause The manager reported the fact that the secretary bought the supplies for the owner. 
 

Verb complement 

clause The manager revealed that the secretary bought the supplies for the owner. 
 

Relative clause The manager liked the secretary who bought the supplies for the owner. 
  

                                                 
1
 According to Marinis (2003), using at least seven syllables helps to ensure that the prime is no longer in active 

short-term/working memory. 
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Each sentence within a scenario had the same number of words following the prime, but they 

varied slightly in the number of words leading up to the prime. Matrix clauses had an average of 

7 words before the prime, noun complements clauses had 8, verb complement clauses had 6, and 

relative clauses had 6. I return to the possible implications of these differences in section 5.  

 Each participant saw only one version of each of the scenario for a total of 32 

experimental sentences per participant. Using a Latin square design, I divided the sentences such 

that each block contained one sentence per verb and equal numbers of each structural context per 

block.  

3.2 Filler items   

 There were 128 filler sentences.
1
 Each of these sentences was followed by a word 

verification task.
2
 Eighty of the verification tasks were intended to elicited a ‘no’ response and 

48 a ‘yes’ response, leading to equal numbers of intended ‘no’ and ‘yes’ responses over the 

course of the entire experiment when the experimental items were included. Of the filler items 

meant to elicit ‘no’ responses, half probed for nouns and half for verbs. Of the fillers items meant 

to elicit ‘yes’ responses, 32 probed for nouns and 16 probed for verbs. Sixteen of the ‘yes’-nouns 

occurred in the first half of the sentence, and 16 occurred in the second half of the sentence. All 

of the ‘yes’-verb fillers probed for the first verb of the sentence. Some of the verbs and nouns 

that occurred as probes were repeated as targets throughout the experiment. This was done to 

mask the repetition of the target dative verbs. 

                                                 
1
 Appendix 3B contains all the filler items used in this study. 

2
 Note that all sentences, experiment and filler, were immediately followed by a word-verification task. The 

statement-verification task followed the word-verification task. 
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 Fifty-four of the filler items were followed by a statement-verification task. This task was 

meant to mask the manipulation and help ensure that participants were attending to the meaning 

of the sentence and not simply memorizing the words. An example of one of the filler items with 

a statement-verification task is in (13) below. 

(13) Filler item and statement-verification pair 

 The policeman liked the uniform, and the fireman loved the new red truck. 

 The policeman hated the uniform.  YES NO 

 

Approximately 42% of all the filler sentences were followed by both a word verification task and 

a statement verification task. In the statement verification task, participants heard the prime 

sentence and responded to the probe word as they normally would, and then they read a sentence 

and determined whether it was true (‘yes’) or false (‘no’) given the sentence they just heard. The 

proportion of ‘yes’/’no’ responses for the statement verification task was equal over the course of 

the experiment. These statement verification sentences probed for information occurring either in 

the first half or second half of the sentence equally.  

 The filler and experimental sentences, along with four training sentences were read by a 

female native-speaker of North American English. The recordings were spliced such that each 

sentence was preceded and followed by 200 msec of silence. For the experimental items, the 

same recording of the dative verb phrase (e.g. “bought the supplies for the owner”) was used for 

each sentence version of each scenario. This was done to ensure that the amount of time between 

the onset of the dative verb for a particular scenario and the probe task was consistent across 

each sentence version for that scenario. The spliced recordings were checked for naturalness by 
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native speakers who were naïve of the manipulation.
1
 

3.3 Method  

 The experimental and filler items were split into four blocks with three breaks between 

them. The items within a block were randomized; however, the presentation of blocks was not. 

This was done to ensure that the general facilitation that arises from repeated exposure to a word 

did not inadvertently affect participants’ response time data. Thus, each participant saw Scenario 

1 for bought in the first block and Scenario 2 for bought in the second block, and so on. Because 

only the comparison among the different sentence types of each scenario was relevant for the 

analysis, it was not necessary to compare different scenarios for the same verb, making 

counterbalancing of block presentation unnecessary. 

Prior to beginning the experiment, participants read through instructions and used 

practice items to familiarize themselves with the task.
2
 During the experiments, participants saw 

a cross-bar fixation point in the middle of the screen while listening to the sentence. Two-

hundred msec after the off-set of the item, the cross-bars disappeared, and a word appeared in its 

place. Participants decided whether they had heard the word in the sentence or not. Following 

some of these probe tasks, participants saw a statement and determined whether it was true given 

the preceding sentence (statement-verification task), using the same yes/no keys. Figure 3.4 

shows the presentation of two items, one filler and one experimental item.
3
  

                                                 
1
 Volunteers piloted the experiment, listening for inconsistencies and oddities such as volume changes, pops, or 

splices. Each volunteer heard the entire set of filler sentences but only one version of each of the experimental 

scenarios.  Only two experimental items and three filler sentences were flagged for inconsistencies. These sentences 

were re-spliced or re-recorded depending on the problem. 
2
 Instead of counterbalancing the presentation, the block ordering was entered into the regression as a fixed effect. 

3
 Appendix 3C contains the instructions used to train the participants on this task. 
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Figure 3.4: Presentation of two items 

 

3.4 Participants  

 Forty-four native-speakers of North American English from the Northwestern University 

community participated for pay or for partial fulfillment of course credit. Eight participants were 

excluded due to a high number of incorrect responses to the statement-verification and word-

verification tasks and due to significantly deviant response behavior, i.e. they answered TRUE to 

all the stimuli, suggesting that they were not attending to the experiment. Data from the 

remaining 36 participants were used for the analysis. A total of 9 participants saw each version 

of each scenario. 

3.5 Data preparation  

 For analyses of the response time data, only the times for correct responses to the target 

items were used for the response time analysis. A mean for each participant was calculated and 

used to trim each participant’s data. Response times that were two standard deviations away 

from a participant’s overall mean were removed (both those that were two deviations faster than 

+
liked

The policeman 

hated the 

uniform.

+
bought

“The policeman liked the uniform, and the 

fireman loved the new red truck.”

“The manager knew that the secretary 

bought the supplies for the owner.”
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the average and two deviations slower than the average). These combined measures led to the 

exclusion of 6% of the total number of responses.  

3.6 Review of SAP and PRICE predictions  

 The SAP account predicts that all primes should demonstrate the same effects on 

subsequent behavior. Thus, response times for the same word in the same scenario should not 

differ simply because the words occur in different structural contexts (e.g. a relative clause rather 

than a matrix clause). Because all the primes were controlled for linear position, they should 

each have similar response times during the identification task. Table 3.2, repeated below, 

demonstrates how linear position was controlled within a set of different sentence types for a 

version of a bought-scenario. 

Table 3.2: Example of four versions of one scenario 
Context Sentence 

 

Matrix clause 
 
The manager left the request, and the secretary bought the supplies for the owner. 

 

Noun complement 

clause 

The manager reported the fact that the secretary bought the supplies for the 

owner. 

 

Verb complement 

clause 
The manager revealed that the secretary bought the supplies for the owner. 

 

Relative Clause 
The manager liked the secretary who bought the supplies for the owner. 

  

 

 The PRICE account claims that we should see more nuanced priming behavior than is 

expected from SAP. PRICE claims that priming effects are mediated by structural context. 

Specifically, the ability of the processor to reactivate a form at the target task depends on the 

features of the unification chain that the prime is associated with. Unification chains are formed 

during the initial processing of the prime sentence. The length of a given chain and the number 
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of chains that result from the processing of a given sentence depend on the sentence’s syntactic 

structure. PRICE claims that primes associated with longer chains should demonstrate less 

priming than those associated with shorter chains. When time is held constant and only structural 

context is varied, PRICE claims that there should be differences in response times to primed 

forms. In contrast, SAP claims that there should be no differences among the primes, even when 

structural context is varied. 

 

4. Results  

 Accuracy:  Accuracy scores were calculated prior to the trimming
1
 measure mentioned in 

section 3.5 above. Thus, all the data were used to determine the overall accuracy. In general, 

participants were highly accurate. Participants responded correctly to the primes in virtually all 

cases. Response accuracy for primes in main clauses, relative clauses, and verb complement 

clauses was about 99%. Response accuracy for primes in noun complement clauses was 97%. 

Due to the high level of accuracy and possible ceiling effects, these data were not explored in 

greater depth.  

 Response time: Only the data remaining after the trimming mentioned in section 3.5 were 

used for the analyses. The response time data were run through a linear mixed model logistic 

regression fit by REML (Baayen, Davidson, & Bates 2008) in which main clauses served as the 

baseline and in which block presentation was a fixed effect, and in which the random intercepts 

                                                 
1
 Recall that for the response time analysis only correct responses were used and that data over or under two 

standard deviations from a participant’s average were excluded.  
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for both participants and verbs were included.
1
  The data were treatment coded so that each level 

of the structural context was compared to the baseline (matrix clause structural context). Table 

3.3 contains the results from this regression.
2
 

Table 3.3: Results from linear mixed model regression 

 Estimate Std Error t-value p-value 

Intercept 833.93 32.13 26.11 0.001*** 

Noun complement clause 34.27 14.56 2.36 0.02*       

Verb complement clause 5.26 14.42 0.37 0.72 

Relative clause 0.84 14.42 0.06 0.91 

Block -42.08 4.56 -9.38 0.001*** 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

The regression found a significant difference between the baseline and noun complement clauses 

(N(36) t = 2.36, p < 0.02) but no difference between the baseline and verb complement clauses 

(N(36) t = 0.37, p = 0.72) or between the baseline and relative clauses (N(36) t = 0.06, p = 0.91). 

Participants were slower in responding to targets when the prime originally occurred in noun 

complement clauses (average: 761 msec; stdev:198 msec) as compared to when the prime 

occurred in matrix clauses (average: 726 msec; stdev:156 msec), relative clauses (average: 726 

msec; stdev:173 msec), or verb complement clauses (average: 732 msec; stdev:168 msec). Post 

hoc t-test analyses further revealed that there was no significant difference between verb 

complement clauses and relative clauses (N(35) t = 0.41, p = 0.68) but that both differed from 

noun complement clauses (verb complement clauses N(35) t = 2.04, p < 0.05; relative clauses 

N(35) t = 2.22, p < 0.05).  

                                                 
1
 Along with allowing me to compare the results to a base line, the use of a mixed model regression allows me to 

control for both random and fixed effects. This helps to control for any noise due to random variation among 

participants or the prime and for the intended, fixed variation among the different blocks. 
2
 MCMC was used to estimate p-values for each of the factors. 
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Figure 3.5 depicts these effects by showing the difference scores for the baseline (matrix 

clause primes) and the three other structural context types.  

 

Figure 3.5: Difference scores between baseline and other clause types 

 

 

As this figure suggests, primes in the scope of noun complement clauses were significantly 

different than any of the other primes relative to the baseline. 

 Before moving into the discussion, there is one possible source of the difference between 

noun complement clauses and other clause types that I wish to address and dismiss. There was a 

possible confound in the stimuli that could have led to proactive interference, situations in which 

previous processing interferes with current processing (Anderson & Neely 1996). Proactive 

interference can be illustrated by considering the ways in which older memories can inhibit the 

Relative clauses Verb complement 

clauses 

Noun complement  

clauses 
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application of newer memories. For example, one may have difficulty recalling where she parked 

her car at work today due to previous parking events in the same lot on prior days. Similarly, one 

may have difficulty recalling a more recently processed word due to the processing of earlier 

words. In the experiment described above, sentences with noun complement clauses had on 

average more words prior to the prime word than the other sentence types. This may have led to 

more processing difficulty at the point of the prime word for sentences with noun complement 

clause than for the other sentence types. The average number of words prior to a prime for 

relative clause sentences and verb complement clause sentences was 6, for matrix clause 

sentences 7, and for noun complement clause sentences 8. However, this difference is unlikely to 

be the source of the response time differences reported above. If proactive interference was, 

indeed, the source of the effect, we should have found the baseline to have been at least 

numerically slower—if not significantly slower—than relative clause sentences and verb 

complement clause sentences. The baseline sentences, i.e. those with two matrix clauses, also 

tended to have more words prior to the prime. If response time in this experiment were simply a 

matter of proactive interference due to the number of words preceding a prime, then the baseline 

primes should have led to response times falling somewhere between the noun complement 

clause sentences and the relative clause and verb complement clause sentences. However, they 

did not.  

 

5. Discussion  

The results from this experiment indicate that not all lexical primes are equal. Those that occur in 
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certain structural contexts demonstrate less priming than the same primes in different structural 

contexts. According to the model presented in Chapter 2, during the processing of sentences in 

this experiment, lexical items (‘declarative chunks’) are activated and held them in working 

memory (WM) until they are popped (released) from the buffer system and unified with another 

chunk. Recall that for all the experimental sentences, the prime word was held constant,
1
 and its 

distance from the target, as measured by syllable length and stimulus onset asynchrony (SOA)
2
 

was held constant. The only factor that varied was the structural context in which the prime 

occurred. The results reported here conflict with the SAP account, which predicts that priming 

for specific lexical items should not be sensitive to the structural context in which the prime 

occurs. The SAP contends that only time matters, specifically, only the amount of time between 

the priming event and the trial matters. If time is held constant, features such as being in a noun 

complement clause or relative clause should be irrelevant. The above results do not support this 

prediction. Rather, they support PRICE.  

 In what follows, I first revisit PRICE along with the model of language processing 

presented in Chapter 2. After this review, I walk through examples of how language processing 

proceeds in the various structural contexts explored in the current study. This demonstration 

focuses on how chunks are unified and the outcome of these unifications. In the final section of 

the discussion, I reflect on how unification cycles affect priming behavior. 

                                                 
1
 To be specific, there were eight total prime words, and each of these prime words was compared to the same prime 

word within a given block across subjects. Thus, the prime bought in a relative clause in Block 1 was compared to 

the prime bought in a verb complement clause in the same block. 
2
 Stimulus Onset Asynchrony (SOA) refers to the amount of time (e.g. msec) between the end of one event and the 

onset of another event. In the current experiment, the SOA refers to the end of the sentence and the onset of the 

probe word verification task. 
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5.1 PRICE and language processing 

 According to PRICE, the structural context in which a prime occurs affects its subsequent 

effect on linguistic behavior. RICE states that the reason for structural context differences stems 

from how various structural contexts are processed and subsequently represented in memory. 

According to the model of language processing presented in Chapter 2, memory holds traces of 

each priming sentence, but the nature of these traces (e.g. their size) is sensitive to how the 

sentences were processed. Some traces allow for greater access to the linguistic units that 

comprised the priming sentence than others. Features such as the size of a memory for a priming 

sentence (i.e. memory for a specific sentence) limit subsequent access for linguistic forms within 

the prime sentence.  

In the model of language memory presented in Chapter 2, sentence processing is treated 

as a series of coordinated problem-solving subgoals used to satisfy a main goal (e.g. ‘process 

sentence’). As the processor works to achieve this goal, subgoals are added to the problem state 

depending on the nature of the chunks in the retrieval buffer or lack thereof (Chapter 2, section 

3.3.1). To determine whether a chunk (and, hence, a new subgoal) enters into the problem state 

buffer, the processor determines whether there are any unresolved (open) values in the chunk’s 

feature-value pairs (Chapter 2, section 3.3.1).  

Recall that chunks can have open values, such as the open NP value (=NP) in the DP 

chunk below and the open =DP and =VP in Chunk 4: 
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Chunk 1 

  

Chunk 2 

  

Chunk 3 
isa    : DP 

case  : nom 

num  : sg 

head  : the 

comp : =NP 

 

 isa    : NP 

case  : nom 

num  : sg 

head  : duke 

 isa    : NP 

case  : acc 

num  : pl 

head  : rubies 

Chunk 4  Chunk 5  Chunk 6 

isa   : S 

num  : pl 

spec  : =DP 

comp : =VP 

tense  : past/pres 

finite : finite 

 

 isa : AdjP 

head : nice 

mod : =NP 

    isa : RelC  

 num  : sg 

   spec: =RelP  

comp : =S-gap 

 mod : =NP 

 
 

 

When the processor retrieves the DP chunk, it places it in the retrieval buffer. On the next cycle, 

when the processor checks the status of the problem state buffer and the retrieval buffer, it 

notices the open =NP value in the DP-chunk, so it pushes the DP-chunk into the problem state 

buffer, making the resolution of the open value a new subgoal (Chapter 2, section 3.3.1).  During 

language processing, the processor generates a series of subgoals in a stack-like fashion. Each 

new subgoal is placed on top of the stack, and no preceding subgoal can be resolved until the 

most-recently generated one has been resolved. Each of these subgoals is a consequence of 

features of retrieved chunks. For example, say the processor needs to process the sentence “the 

duke loves the rubies.” In order to begin processing this sentence, the processor must retrieve an 

S-chunk (e.g. Chunk 4), which has two open values (=DP and =VP). Because it has open values, 

the S-chunk is placed into the problem state buffer, generating two subgoals: ‘process DP’ and 

‘process VP.’ Neither of these two subgoals is resolved until each of the phrases has been 

completely processed. 

In the demonstration below, I show only the processing of the subject DP of a sentence 
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such as “The duke promised the duchess the rubies.” This is not meant to suggest that processing 

must be incremental, with the subject always being processed before the predicate. Although in 

comprehension the subject is processed first due to the linear nature of the speech stream, the 

current model is agnostic about which is processed first: the subject DP or predicate VP. The 

model of language processing I am assuming allows for the verb to be processed first, as in verb-

centered processing models.
1
   Furthermore, my model does not address when other processes, 

such as phonological encoding, take place. I restrict the scope of the current discussion strictly to 

syntactic processing, with a current focus on comprehension because of the design of the 

experiment described above. 

 The processor begins sentence comprehension with the goal ‘process sentence.’ This goal 

leads to the retrieval of an S-chunk. The S-chunk has two open values: =DP and =VP. The 

processor begins with the =DP (‘process DP’) subgoal. 

 Subgoal stack 

� ‘process DP’ 

‘process S’ 

 

The processor retrieves a DP-chunk (e.g. Chunk 1). However, this chunk has an open value: 

=NP. The DP-chunk is placed in the problem state, generating a new subgoal: ‘process NP.’ The 

subgoal ‘process S’ cannot be resolved until the other two subgoals have been resolved.  

 Subgoal stack 

� ‘process NP’ 

‘process DP’ 

‘process S’ 

                                                 
1
 For discussion of incremental processing and the centrality of the verb, see Bock & Levelt 1994; Ferreira 2000; 

Ferreira & Swets 2002; Ferreira & Slevc 2007; Ford 1982; Garrett 1982; Keller 2009; Tanenhaus, Spivey-Knowlton, 

Eberhard, & Sedivy 1995. 
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The processor then retrieves the NP-duke-chunk (Chunk 2) and places it in the retrieval buffer. 

This chunk has no open values, so it does not go into the problem state buffer.  Rather, it is 

popped. This popping resolves the subgoal ‘process NP,’ thereby allowing the processor to move 

on to resolving the next subgoal: ‘process DP.’  

 Subgoal stack Resolved subgoals 

� ‘process DP’ 

‘process S’ 

‘process NP’ 

 

Once the values of the popped NP are unified with the open values of the DP-chunks =NP (see 

Chapter 2, section 3.3), the open values of the DP-chunk’s =NP are resolved, leading to the 

completion of the ‘process DP’ subgoal: 

 Subgoal stack Resolved subgoals 

� 
‘process S’ ‘process DP’ 

‘process NP’ 

 

Because the ‘process DP’ subgoal is resolved, the processor can return to the next subgoal: 

‘process S.’  

 This demonstration depicts a line of subgoal processing in which the product of one 

unification becomes input for the next subgoal. For example, the unification cycle that unified 

the NP-chunk’s values and the open =NP value in the DP-chunk led to the popping of a more 

fully specified DP-chunk. This DP-chunk could then unify with the open =DP value in the S-

chunk, which was the next subgoal in the subgoal stack. Because each unification cycle 

generated a form that could be unified with an open value in the next subgoal, together the 
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unification cycles form a unification chain. However, there are times when the product of a 

unification cycle cannot unify with an open value in the next subgoal.  

 For example, consider the processing of the phrase ‘the nice duke’ (see also Chapter 2, 

section 3.4.3). We begin with the subgoal ‘process NP.’ This subgoal is always generated 

whenever a DP-chunk with an open =NP value is pushed into the problem state buffer. 

 Subgoal stack 

� 
‘process NP’ 

‘process DP’ 

‘process S’ 

 

Next, the processor encounters an AdjP chunk: Chunk 5 (nice). Because the AdjP-chunk has an 

open value (=NP) in its ‘mod’ feature, the chunk is pushed into the problem state buffer, 

generating another ‘process NP’ subgoal. 

 Subgoal stack 

� 
‘process NP’ 

‘process NP’ 

‘process DP’ 

‘process S’ 

 

Now, the processor processes the NP-duke-chunk. The chunk has no open values, so it is popped.  

 Subgoal stack Resolved subgoals 

� 
‘process NP’ 

‘process DP’ 

‘process S’ 

 ‘process NP’ 

 

Because it matches the open value (=NP) in the AdjP-chunk’s ‘mod’ feature, the popped NP 

unifies with the open =NP value of the AdjP-chunk. The AdjP-chunk is popped and becomes 

available for subsequent unification. 
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 Subgoal stack Resolved subgoals 

� 
‘process NP’ 

‘process DP’ 

‘process S’ 

‘process NP’ 

 

However, the  popped AdjP-nice-chunk does not satisfy the current subgoal ‘process NP.’ Thus, 

the AdjP-chunk goes directly to long-term memory (LTM). Recall that just because the syntactic 

processing is complete, other levels of processing (e.g. semantic) may still be active (Allen & 

Badecker 1999, 2000; Dell 1986; Roelofs 1992, 1993 inter alia, see also Chapter section 3.1). In 

other words, the syntactic aspects of processing the phrase ‘nice duke’ are complete. The AdjP 

has been formed. However, the phonological encoding of the phrase may still be underway and 

the semantic referent of the phrase may still be active. As such, different levels of processing for 

the phrase ‘nice duke’ may still be in progress.  

 The important difference to note between the processing of the phrase ‘the duke’ and the 

phrase ‘the nice duke’ is that in the first, each popped (‘processed’) chunk satisfies an open value 

in the top-most chunk in the problem state buffer, whereas in the second example (‘the nice 

duke’), some chunks (i.e. the AdjP-chunk) encountered do not. Recall that these open values act 

as subgoals that create a stack-like structure. As the processor works through the stack, it 

satisfies the open values in the chunks. In the second example (‘the nice duke’), there is not an 

open value for the AdjP-chunk and, hence, no subgoal that it could satisfy. Thus, the popped 

AdjP-chunk cannot modify the subgoal structure, unlike the popped NP-chunk and popped DP-

chunk which can.  

In Chapter 2, section 3.4.3, I argued that whether a popped chunk modifies the subgoal 

structure (i.e. satisfies an open value) has implications for the way memory traces are generated 
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and subsequently recalled. Each time a popped chunk is successfully unified with an open value 

of another chunk, there is a unification cycle. Each cycle can constitute a link in a chain of 

unifications (‘unification chain’). If the product of a unification cycle feeds directly into the next 

subgoal, the unification chain grows longer. The chain does not grow if the product does not 

satisfy a subgoal. 

 One consequence of this process of linking unification cycles into chains is that the 

processing of arguments and adjuncts differs. Arguments always lead to the satisfaction of the 

next subgoal in the subgoal stack, e.g. processing an NP satisfies the subgoal ‘process NP’ 

associated with the processing of a DP-chunk. However, adjuncts never lead to the satisfaction of 

a subgoal on the subgoal stack. Adjuncts chunks (e.g. the AdjP-chunk Chunk 5 and the RelC-

chunk Chunk 6) place restrictions on the types of chunks they modify via their ‘mod’ feature. 

However, by definition, no chunk selects for an adjunct chunk such as the AdjP-chunk. 

Consequently, adjuncts cannot be part of the same unification chain as the chunks preceding it. 

Rather, an adjunct chunk, such as the one above, is associated with a separate unification chain 

that results from unifying an NP-chunk and the ‘mod’ value of an AdjP-chunk. Thus, the phrase 

‘the duke’ is associated with only one unification chain, whereas the phrase ‘the nice duke’ is 

associated with two (see also Chapter 2, section 3.4.3): 

Unification chain for “the duke” 

unify pop-NP with =NP in DP 

unify pop-DP with =DP in S 

 

Unification chains for “the nice duke” 

unify pop-NP with =NP in AdjP unify pop-NP with =NP in DP 

unify pop-DP with =DP in S 
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These unification chains act as a form of bookkeeping. The chunks and rules associated 

with each chain are ultimately represented together in memory. As discussed in section 2.1 

above, the features of a sentence’s chain(s) affects subsequent behavior. For example, the length 

of a given chain affects the ability of the processor to locate specific chunks associated with the 

chain. During subsequent processing, a prime’s unification chain, which reflects the structural 

context in which the prime was processed, affects how accessible the prime is. This accessibility, 

in turn, affects the likelihood that the prime can affect subsequent performance.  

I now turn to specific examples of how the different sentence types are processed given 

the model of processing presented in Chapter 2. In doing so, I demonstrate how the sentences 

differ in terms of the number and length of the unification chains that they are associated with. 

These differences correlate with performance differences, i.e. primes that are associated with 

longer unification chains demonstrate less priming than those associated with shorter chains, 

even when time is held constant. 

5.2 Processing chunks in different structural contexts 

 We begin with a sentence in which the prime word (i.e the bolded promise) occurs in a 

matrix clause. 

(14) Prime in matrix clause 

The duke promised the duchess the rubies. 

 

For the following demonstration, I present the history of chunk retrievals, unifications, and 

formation of unification chains from the perspective of sentence comprehension. This means that 

when the processor ‘processes’ a word, the processor has comprehended the word and has 

automatically retrieved the associated chunk and placed it in the retrieval buffer. However, I 
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attempt to be as general as possible, such that the history of events could apply to either sentence 

comprehension or production. In this and all subsequent demonstrations, the processing goals are 

shown in a box, whereas all the retrieved chunks appear in brackets. When I discuss the 

processing of adjuncts, I introduce additional notation. A solid arrow (�) denotes the application 

of a production rule that retrieves a chunk. A terminal button  ( ) denotes the application of a 

production rule that pops chunks. A dashed arrow ( ) represents unification. For example, the 

diagram below shows the series of steps used to retrieve an S-chunk, then a DP-chunk (�), then 

an NP-chunk (�), followed by the popping ( ) of the NP, and its unification with the open =NP 

value of the DP-chunk ( ).  

 

 

 unify NP with =NP of the DP 

The right-hand column keeps track of all the unification cycles that have occurred during the 

processing event. The numbering of the nouns and verbs is strictly for the purpose of describing 

the examples. For instance, the NP that is unified with the open =NP value of the DP-chunk is 

labeled as “NP1.”  Following each demonstration is a table that displays all of the chunks 

retrieved generated during the sentence’s processing. The tables take a form such as the one 

given below: 

Retrieved chunks Unification cycles 
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unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

 

 

I first illustrate the processing of (14): 

(14) Prime in matrix clause 

The duke promised the duchess the rubies. 

 

The processor begins with a goal, i.e. ‘process sentence’: 

 

Once this goal is set in the control state buffer, the system retrieves the basic sentence frame 

using a production rule (‘retrieve S-chunk,’ see Appendix 2A for a complete list) which places 

an S-chunk into the retrieval buffer: 

 

The S-chunk has two open values: =DP and =VP. These open values serve as placeholders for 

values to be provided by other chunks. Because there are open values, the processor determines 

that the chunk is incomplete and that its values must be satisfied before the goal is satisfied. 

Thus, the processor selects a rule that pushes the S-chunk into the problem state buffer (see 

Chapter 2, section 3.3.1). At this point, there are two subgoals: ‘process DP’ and ‘process VP.’ 

The processor could choose to begin work on either of them first, but for our purposes, I stipulate 

that the processor begins with the ‘process DP’ subgoal. 

S-chunk

NP-duke-chunk

DP-the-chunk

process sentence
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Upon the processing of the word the, a new chunk is retrieved (i.e. DP-the-chunk), which 

contains its own open value (i.e. =NP). Because of this open value, the processor chooses a 

‘push’ production rule that forces the DP-chunk into the problem state buffer, thereby leading to 

a new subgoal (‘process NP’). 

 

Now there are two chunks associated with the goal of comprehending the sentence, both of 

which contain open values and, thus, are part of the problem state. The most recently added 

subgoal is the one associated with the open value of the DP, namely the ‘process NP’ subgoal. 

This subgoal must be resolved before the processor can resolve the subgoals associated with the 

S-chunk. After processing duke, the processor retrieves an NP-chunk from memory (NP-duke-

chunk) and places it in the retrieval buffer.  

 

Because this chunk has no open values, it is popped from the retrieval buffer, thereby becoming 

available for unification. Unification proceeds and the popped NP’s values unify with the =NP in 

the DP-chunk:  

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

isa : NP1

orth: duke
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unify NP1 with =NP of DP1 

 

Because the popped NP-chunk unified with the open =NP value of the DP-chunk, there is now 

one unification cycle listed above.  

Now that the values of the DP-chunk are filled, it too is popped. The DP-chunk’s values 

unify with the open =DP value in the S-chunk. This unification also counts as a unification cycle.  

 

unify NP1 with =NP of DP1 

unify DP1 with =DP of S 

 

 

Because the product of the two unification cycles (e.g. NP and =NP, and DP and =DP) directly 

lead to the resolution of the next subgoal in the subgoal stack ‘process DP’ of the S-chunk, the 

two unification cycles are linked together in the same unification chain. One thing to note in the 

depictions above is that once a chunk is popped, the appearance of the chunk changes, i.e. the 

font size decreases. This is meant to indicate the onset of decay. Once a form is popped (e.g. 

NP1), its individual activation begins to wane. For ease of presentation, I do not show chunks 

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

isa : NP1

orth: duke

!pop!-NP1

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

isa : NP1

orth: duke

!pop!-NP1!pop!-DP1
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that have been popped and unified from this point forward. After a chunk has been popped, it is 

no longer in use and, hence, its activation boost begins to wane. 

 The S-chunk still has one open value (=VP), so the S-chunk remains in the problem state. 

Upon comprehending promise, the processor retrieves the VP-promise-chunk and places it in the 

retrieval buffer. The slash between the two forms in the second ‘comp’ position (i.e. DP/PP) 

indicates that the post-verbal complement of promise can take two forms: “promise the duchess 

the rubies” (NP,NP), or “promise the rubies to the duchess” (NP,PP). The alternation between 

these two patterns is called DATIVE ALTERNATION, which refers to the variable ordering of 

arguments following dative verbs such as, promise, show, and give (e.g. Bresnan 2007; Bresnan, 

Cueni, Nikitina, & Baayen 2007; Bresnan & Nikitina 2009; Doyle & Levy 2008; Green 1974; 

Oehrle 1976). In the dative object order (NP,NP), the recipient/benefactor (“the duchess”) 

precedes the patient (“the rubies”).  In the prepositional dative order (NP,PP), the patient 

precedes the recipient/benefactor. 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

 

 

The VP-chunk has multiple open values, so it too is placed into the problem state buffer. Each of 

process sentence

isa : S

spec : the duke

comp : =VP

isa : VP

orth: promise

comp : = DP2

=DP3/PP
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its open values entails the creation of a new subgoal. Upon hearing the, the processor again 

retrieves the DP-the-chunk. This chunk also has an open value, so it too is placed in the problem 

state buffer until its values are filled. 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

 

Then the word duchess is comprehended, leading to the retrieval of the NP-duchess-chunk. 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

 

 

There are no open values in this chunk, so it is popped and unified with the DP-the-chunk. 

Because the NP-duchess-chunk substitutes its values for the open =NP value in the DP-the-

chunk, it counts as a unification cycle.  

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP2

orth: the

comp : = NP2

isa : VP

orth: promise

comp : = DP2

=DP3/PP

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP2

orth: the

comp : = NP2

isa : NP2

orth: duchess

isa : VP

orth: promise

comp : = DP2

=DP3/PP
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unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

 

 

 This unification resolves the open =NP value in the DP, meaning that the DP is now complete 

and the subgoal ‘process NP’ is complete. The DP is popped from the retrieval buffer, becoming 

available for unification with the chunk associated with the next subgoal, i.e. the VP-chunk. 

The DP-chunk and the open =DP value of the VP-chunk are unified, counting as another 

unification cycle. The output of this unification cycle satisfies an open value in another chunk 

(i.e. the VP-chunk). Thus, it affects the subgoal structure and becomes a link in the unification 

chain. 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP2

orth: the

comp : = NP2

isa : NP2

orth: duchess

isa : VP

orth: promise

comp : = DP2

=DP3/PP

!pop!-NP2
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unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

 

 

The first argument of the VP-promise-chunk is now filled. 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

 

However, there is still another open value, so the VP-promise-chunk remains in the problem state 

buffer.  

After processing the, the processor retrieves the DP-the-chunk and places it in the 

retrieval buffer. 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP2

orth: the

comp : duchess

isa : VP

orth: promise

comp : = DP2

=DP3/PP

process sentence

isa : S

spec : the duke

comp : =VP

isa : VP

orth: promise

comp : the duchess

=DP3/PP



163 

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

 

The same process of retrieving, popping, and unifying that we saw for the previous DPs 

continues with the processing of this DP: 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

 

 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP3

orth: the

comp : =NP3

isa : VP

orth: promise

comp : the duchess

=DP3/PP

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP3

orth: the

comp : =NP3

isa : NP3

orth: rubies

isa : VP

orth: promise

comp : the duchess

=DP3/PP



164 

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

unify NP3 with =NP3 of DP3 

 

 

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of VP 

 

The product of each of these unification cycles can unify with open values of the chunk 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP3

orth: the

comp : =NP3

isa : NP3

orth: rubies

isa : VP

orth: promise

comp : the duchess

=DP3/PP

!pop!-NP3

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP3

orth: the

comp : rubies

isa : VP

orth: promise

comp : the duchess

=DP3/PP

!pop!-DP3
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associated with the next subgoal. As such, they occur in the same unification chain. 

 Now that all the open values for the VP-promise-chunk are filled, the VP chunk is 

popped. It unifies with the =VP in the S-chunk. This unification cycle adds another link to the 

unification chain that formed during the processing of the VP predicate for the S-chunk. 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of VP 

unify VP with =VP of S 

 

 

Now that the S-chunk’s values are all satisfied, it is popped. There are no additional subgoals in 

the problem state. The main goal is now complete, and the sentence “The duke promised the 

duchess the rubies” enters into memory as one unit.  

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of VP 

unify VP with =VP of S 

unify S with control state 

 

 

In this example, the prime word promise occurs in the matrix clause as the main verb. It is 

associated with the unification chain generated by the processing of “the duke promised the 

duchess the rubies.” Figure 3.6 presents a summary of all the processing steps (chunk retrievals, 

process sentence

isa : S

spec : the duke

comp : =VP

isa : VP

orth: promise

comp : the duchess

the rubies

!pop!-VP

process sentence

isa : S

spec : the duke

comp : promise the 

duchess the rubies

!pop!-VP



166 

 

poppings, and unifications) with the prime word circled. This figure displays each of the 

components involved in the processing of the matrix clause discussed above (“The duke 

promised the duchess the rubies”).
1
 

Figure 3.6: Retrieval of chunks and rules for processing a matrix clause 

 

 

Table 3.4 below contains a full list of all the unification cycles that occurred in the 

processing of this sentence. The unifications are listed in the order in which they occurred. The 

chunks associated with the processing of the matrix clause “The duke promised the duchess the 

rubies” are on the left.  

                                                 
1
 Figures for each of the sentence types, similar to this one, are included in Appendix 3D. 

Process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP1

isa : NP1

orth: duke

isa : VP

orth: promise

comp : =DP2

=DP3/PP

isa : DP2

orth: the

comp : =NP2

isa : NP2

spec : duchess

isa : DP3

orth: the

comp : =NP3

isa : NP3

spec : rubies

!pop!-NP1

!pop!-NP2

!pop!-NP3

!pop!-DP2

!pop!-DP3

!pop!-DP1

!pop!-VP

!pop!-S
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Table 3.4: Outline of the unification chain with cycles and associated chunks 
Retrieved chunks Unification cycles 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of VP 

unify VP with =VP of S 

unify S with control state 

 

For now, the relevant column is the left-hand column, which contains the chunks associated with 

the unification chain in which the prime word, promise, occurs. There are eight chunks in the set 

of chunks that were used during the processing of the matrix clause “The duke promised the 

duchess the rubies.” This number is relevant because the number of chunks associated with a 

given context affects the activation weight of the primed chunk. 

In Chapter 2, section 3.3.2, I argued that chunk retrieval was sensitive to a chunk’s 

activation.  The higher a chunk’s activation, the more like it is to be retrieved. This activation can 

be estimated using the total activation weight formula repeated below: 

            Ai = Bi +Σj wjsji 
   Total activation weight 

In this equation, we see that activation is a combination of the base activation weight Bi, which is 

calculated using the formula below, and other factors, which I return to later: 

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk
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Bi = ln � tj−d
�

��	
 

(Base) Activation weight 

The important aspects of this formula for our current purposes are j, which reflects the amount of 

time t since its most recent retrieval j, and d, which is the constant rate of memory decay. 

Combined, these factors reflect the recency effect. Recently processed forms have experienced 

less decay than those that were processed less recently, and as such should have slightly higher 

activations. 

The base activation weight feeds into the total activation weight equation above. The total 

activation weight reflects the base activation weight and other factors that can affect the 

activation weight of a given chunk. In Chapter 2, section 3.3.2, I contend that the number of 

elements j associated with a goal and their weighted strength Wj can affect the activation weight 

of a chunk. Specifically, I argued that the more chunks associated with a goal, the less activation 

there is for each particular chunk. The reason that the number of chunks is relevant is that Wj is 

not free but is determined by the formula G/j, where j is the number of goal features (e.g. 

chunks) and G the amount of goal activation. The amount of cognitive resources is constant and 

must be shared among the chunks for a given goal. As the number of chunks increases, the 

amount of goal activation each chunk receives decreases. In the processing of the sentence “The 

duke promised the duchess the rubies,” the processor retrieves and unifies 8 chunks, so the goal 

activation is shared equally among these 8 chunks (0.13 each). 

 In the experiment described in the previous section, when the processor tries to determine 

whether a specific word occurred in a previous sentence, the processor retrieves the unification 
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chains generated during the processing of a sentence.
1
  Prime chunks that are associated with 

chains with fewer chunks than those associated with chains with more chunks have a greater 

portion of the cognitive resources associated with the goal. This leads to the prediction that 

chunks that are associated with shorter unification chains should affect priming more than those 

that are associated with longer chains when time and the effects of recency (tj 
–d

) are held 

constant. 

 Using the number of chunks in the matrix sentence as a baseline, we now turn to the 

processing of the other sentence types examined in the experiment discussed in the previous 

section to determine whether differences in the unification chains and their associated chunks 

correlate with the response time data. I contend that arguments are processed with their selectors. 

The processing of the selector (e.g. a DP-chunk, ‘the’) entails the processing of its argument (e.g. 

an NP-chunk, ‘duke’) to generate a grammatical phrase or clause (e.g. “the duke”). Because of 

this, the argument and its selector are inextricably linked, and this linking is captured by the 

unification chain that joins them. However, adjuncts by definition are not selected by any chunk. 

Thus, they are not linked to other chunks other than those necessary for the processing of the 

adjunct itself. For example, all the chunks necessary for the processing of the relative clause 

“who like pumpkins” plus the chunk it modifies “girl” are associated with one unification cycle 

“girl who likes pumpkins”). 

I propose that the fact that argument clauses (e.g. the complement clause “that the girl 

likes pumpkins”) necessarily are associated with longer unification chains than adjunct clauses 

                                                 
1
 Recall that in the experiment, participants were asked to determine whether a currently displayed word (e.g. 

bought) occurred in the sentence they previously heard (e.g. “the secretary bought the supplies for the owner”), so 

they need to reactivate their memory for the previous sentence. 



 

(e.g. the relative clause and the form it modifies 

clauses are selected by their heads (e.g. 

therefore, associated with the same unification chain. I further claim that differences in the length 

of these chains ultimately affects priming from inside argument and adjunct clauses. 

To test this claim, I now illustrate how sentences containing noun complement clauses 

are processed in the model presented in Chapter 2. As discussed in the previous section,  in th

sentence type, the prime word occurred in the same linear position as 

such as “the duke promised the duchess the rubies.

occurred the same number of syllables and seconds away from the target task. Consider the 

following sentence, which contains the prime (bolded

(bracketed):  

(15) Prime in noun complement clause

        The report declared the fact [that the duke 

 

 As with the matrix clause above, we start with a main goal and primary S

values. 

 

 

 

Upon the processing of the, the relevant chunk is retrieved (i.e. DP

(e.g. the relative clause and the form it modifies “girl who likes pumpkins”) because argument 

clauses are selected by their heads (e.g. “Gordon knows that the girl likes pumpkins

the same unification chain. I further claim that differences in the length 

of these chains ultimately affects priming from inside argument and adjunct clauses. 

now illustrate how sentences containing noun complement clauses 

essed in the model presented in Chapter 2. As discussed in the previous section,  in th

sentence type, the prime word occurred in the same linear position as it did in matrix

the duke promised the duchess the rubies.” Specifically, the prime word always 

occurred the same number of syllables and seconds away from the target task. Consider the 

following sentence, which contains the prime (bolded) within a noun complement clause 

Prime in noun complement clause 

t declared the fact [that the duke promised the duchess the rubies].

As with the matrix clause above, we start with a main goal and primary S-chunk with open 

, the relevant chunk is retrieved (i.e. DP-the-chunk) and 
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) because argument 

Gordon knows that the girl likes pumpkins”) and are, 

the same unification chain. I further claim that differences in the length 

of these chains ultimately affects priming from inside argument and adjunct clauses.  

now illustrate how sentences containing noun complement clauses 

essed in the model presented in Chapter 2. As discussed in the previous section,  in this 

it did in matrix clauses 

rime word always 

occurred the same number of syllables and seconds away from the target task. Consider the 

a noun complement clause 

the duchess the rubies]. 

chunk with open 

chunk) and the process of 
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building a subject proceeds. 

 

After the processor encounters the word report, a NP-report-chunk is placed in the retrieval 

buffer. 

 

This NP has no open values, so the process of popping and unifying elements of the subject DP 

proceeds in the same manner as in the previous demonstration:  

 

unify NP1 with =NP1 of DP1 

 

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

 

Process sentence

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : =NP1

Process sentence

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : =NP1

isa : NP1

orth: report

Process sentence

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : =NP1

isa : NP1

orth: report

!pop!-NP1

Process sentence

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : report

!pop!-DP1
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Two unification cycles have occurred, one unifying the NP-chunk and open =NP value of the 

DP-chunk, one unifying the DP-chunk and the open =DP value of the S-chunk. The product of 

each unification cycle resolved open values in the chunk associated with the problem state, so the 

cycles are part of the same unification chain. The open =DP value of the S-chunk is now filled, 

and the processor is ready for the next element. Once the processor encounters the verb declared, 

it retrieves the VP-declare-chunk and places it in the retrieval buffer.  

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

 

 

The declare chunk requires either a DP or CP argument as denoted by the =DP/CP,
1
 so it cannot 

be popped. It is added to the problem state with a subgoal set for processing its open =DP/CP 

value. Upon hearing the, the processor again retrieves the DP-the-chunk and begins work to fill 

its open values. 

                                                 
1
 See Grimshaw (1979) for a detailed review of complement-taking predicates such as the ones used in the current 

work. 

Process sentence

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP
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unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

 

 

The word fact is then processed, leading to the retrieval of the NP-fact-chunk. This chunk can 

optionally take a complement clause as an argument. I represent the optionality of the CP 

argument by using the value =0/CP. This notation is meant to reflect that fact optionally takes a 

CP argument.  

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

 

Then the processor encounters the complementizer that.  The retrieval of the complementizer 

leads to the creation of a new subgoal: ‘process CP.’ The processor continues with the retrieval 

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP

Process sentence

isa : NP2

orth: fact

comp : =0/CP

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP



174 

 

of the CP-chunk and the comp-that-chunk.
1
 

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

 

 

The comp-that-chunk unifies with the open =comp value in the CP-chunk, but the CP-chunk still 

has an open value, namely an =S. The S-chunk is retrieved and placed in the retrieval buffer. It 

has two open values (=DP and =VP) and is, hence, sent to the problem state buffer until both of 

these values are resolved. With the comprehension of the and the retrieval of the DP-the-chunk, 

the processing of the DP subject begins. The chain of retrievals, popping, and unifying for the 

subject DP are shown below. 

                                                 
1
 For ease of presentation, I show the retrieval of these two chunks, the popping of the comp-that-chunk, and the 

unification of these chunks in one step. 

Process sentence

isa : CP

spec: =comp

comp : =S2

isa : NP2

orth: fact

comp : =0/CP

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP

isa : comp

orth: that

!pop!-comp
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unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP2 with =NP3 of DP3 

unify DP2 with =DP3 of S2 

 

 

  

The DP-the duke-chunk is unified with the open =DP in the S-chunk, satisfying one of the S-

chunk’s open values, leaving only the =VP unresolved. Once the promised is processed, the VP-

promise-chunk is retrieved and placed in the retrieval buffer.  

Process sentence

isa : S2

spec : =DPe

comp : =VP2

isa : DP3

orth: the

comp : =NP3

isa : NP3

orth: duke

!pop!-NP3!pop!-DP3

isa : CP

spec: that

comp : =S2

isa : NP2

orth: fact

comp : =0/CP

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP
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unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP2 with =NP3 of DP3 

unify DP2 with =DP3 of S2 

 

 

  

This chunk has two open values for its arguments, so it is placed into the problem state buffer 

until these values are resolved. The processing of the VP-promise-chunk’s two arguments 

proceeds exactly as it did in the matrix demonstration above, so I do not show the process here. 

We pick up the processing again with the completed VP-promise-chunk, after the unification of 

VP2 with the = VP value of the of S2-chunk. The unification cycles that arose during this 

processing are shown in the right-hand column. 

Process sentence

isa : S2

spec : the duke 

comp : =VP2

isa : VP2

orth: promise

comp : =DP4

=DP5/PP

isa : CP

spec: that

comp : =S2

isa : NP2

orth: fact

comp : =0/CP

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP
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unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of S2 

unify NP4 with =NP4 of DP4 

unify DP4 with =DP4 of VP2 

unify NP5 with =NP5 of DP3 

unify DP5 with =DP5 of VP2 

unify VP2 with =VP2 of S2 

 

 

 

 

Note that thus far the product of each unification cycle has unified with an open value in 

the chunk associated with the next subgoal in the problem state. Thus, each unification cycle has 

been part of the same unification chain. 

Now that the S-chunk has been satisfied, it is popped. However, in the current 

demonstration—unlike the matrix example above, the S-chunk does not satisfy the final goal in 

the control state (i.e. ‘process sentence’). There are still many stacked sugoals in the problem 

state that need to be resolved. The popped S-chunk unifies with the open =S value in the CP-

chunk, and this unification cycle is added to the ever-growing unification chain. The values for 

the CP-chunk are all satisfied, so the CP-chunk is popped. Its values satisfy the open =CP value 

Process sentence

isa : S2

spec : the duke 

comp : promise the 

duchess the rubies

isa : CP

spec: that

comp : =S2

isa : NP2

orth: fact

comp : =0/CP

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP
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in the NP-fact-chunk, and they are unified, adding another unification cycle to the chain. 

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of S2 

unify NP4 with =NP4 of DP4 

unify DP4 with =DP4 of VP2 

unify NP5 with =NP5 of DP3 

unify DP5 with =DP5 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of CP 

unify CP with =CP of NP2 

 

 

 

 

 

 We continue to unify chunks, working our way back toward the main goal ‘process 

sentence.’ The NP2-chunk’s values are satisfied, so it is popped. It unifies with the open =NP2 

value in the DP2-chunk in the problem state buffer, adding another cycle to the chain. 

Process sentence

isa : CP

spec: that

comp : the duke 

promise the duchess 

the rubies

isa : NP2

orth: fact

comp : =0/CP

!pop!-CP

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP
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unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of S2 

unify NP4 with =NP4 of DP4 

unify DP4 with =DP4 of VP2 

unify NP5 with =NP5 of DP3 

unify DP5 with =DP5 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of CP 

unify CP with =CP of NP2 

unify NP2 with =NP2 of DP2 

 

 

 

 

The DP2-chunk’s open values are resolved, it pops, unifies with the open =DP2 value of the VP1-

chunk, and another link is added to chain. 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of S2 

unify NP4 with =NP4 of DP4 

unify DP4 with =DP4 of VP2 

unify NP5 with =NP5 of DP3 

unify DP5 with =DP5 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of CP 

unify CP with =CP of NP2 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP1 

 

 

 

 

 

 

 

The processing continues with the popping of the VP1-chunk and its unification with the open 

Process sentence

isa : NP2

orth: fact

comp : that the 

duchess promise 

the duchess the 
rubies!pop!-NP2

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP

Process sentence

isa : DP2

orth: the

comp : fact that 

the duke promise 

the duchess the 
rubies 

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : DP2/CP

!pop!-DP2
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=VP1 value of the S1-chunk, adding a  link to the unification chain. 

 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of S2 

unify NP4 with =NP4 of DP4 

unify DP4 with =DP4 of VP2 

unify NP5 with =NP5 of DP3 

unify DP5 with =DP5 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of CP 

unify CP with =CP of NP2 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP1 

unify VP1 with =VP1 of S1 

 

 

Finally, both of the open values for the S1-chunk are satisfied, and the S1-chunk is popped. It 

unifies with the main goal in the control state: ‘process sentence.” We have reached the end of 

the unification chain that the prime is associated with. 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of S2 

unify NP4 with =NP4 of DP4 

unify DP4 with =DP4 of VP2 

unify NP5 with =NP5 of DP3 

unify DP5 with =DP5 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of CP 

unify CP with =CP of NP2 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP1 

unify VP1 with =VP1 of S1 

unify S1 with the control state 

 

Figure 3.7 depicts all the retrieved chunks, poppings, and unifications associated with the 

processing of the sentence “The report declared the fact that the duke promised the duchess the 

Process sentence

isa : S1

spec : the report

comp : =VP1

isa : VP1

orth: declare

comp : the fact that 

the duke promise the 

duchess the rubies

!pop!-VP1

Process sentence

!pop!-S2

isa : S1

spec : the report

comp : declare the fact

that the duke promise 

the duchess the rubies
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rubies.” In this diagram, we see that the prime word, promise (circled), occurred in a larger 

network of chunks than the same prime in the matrix sentence (i.e. “The duke promised the 

duchess the rubies.”). 

Figure 3.7: Retrieval of chunks and rules for processing noun complement clauses 

 
 

In this example (as in the previous one), the product of each unification cycle fed directly into 

the problem state. In other words, when two chunks were unified, the unified form was of a type 

Process sentence

isa : S2

spec : =DPe

comp : =VP2

isa : DP3

orth: the

comp : =NP3

isa : NP3

orth: duke

isa : VP2

orth: promise

comp : =DP4

=DP5/PP

isa : DP4

orth: the

comp : =NP4

isa : NP4

spec : duchess

isa : DP5

orth: the

comp : =NP5

isa : NP5

spec : rubies

!pop!-NP3

!pop!-NP4

!pop!-NP5

!pop!-DP4

!pop!-DP5

!pop!-DP3
!pop!-VP2

!pop!-S2

isa : CP

spec: =comp

comp : =S2

isa : NP2

orth: fact

comp : =0/CP

!pop!-CP

!pop!-NP2

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : =NP1

isa : NP1

orth: report

isa : VP1

orth: declare

comp : DP2/CP

!pop!-DP1 !pop!-NP1

!pop!-DP2

!pop!-VP1

!pop!-S1

isa : comp

orth: that

!pop!-comp
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that satisfied one of the open values of the next available chunk in the problem state buffer.  

  Recall that the prime in the matrix clause and the prime in the noun complement clause 

occurred in the same linear position, i.e., they were the same number of syllables and 

milliseconds away from the target. Hence, recency was the same across the two structural 

contexts. However, the length of the unification chains that they were associated with and the 

number of elements within these chains varied drastically. To make this easier to visualize, 

consider Table 3.5, which contains the unification chain and its cycles (right-hand side) and the 

chunks associated with this chain (i.e. the unification chain that arose during the processing of 

“The report declared the fact that the duke promised the duchess the rubies”).  
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Table 3.5: Unification chain and associated chunks for prime in noun complement clause 

Retrieved chunks Unification cycles 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of S2 

unify NP4 with =NP4 of DP4 

unify DP4 with =DP4 of VP2 

unify NP5 with =NP5 of DP3 

unify DP5 with =DP5 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of CP 

unify CP with =CP of NP2 

unify NP2 with =NP2 of DP2 

unify DP2 with =DP2 of VP1 

unify VP1 with =VP1 of S1 

unify S1 with the control state 

 

Here we see that there are 16 chunks associated with the unification chain in which the prime 

(VP-promise-chunk) occurs. Compare this with the number of chunks occurring in the 

unification chain for the matrix example, as shown in Table 3.6. 

NP-report-chunk

VP-declare-chunk

NP-fact-chunk

DP-the-chunk

CP-chunk

S-chunk

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

Comp-that-chunk

DP-the-chunk
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Table 3.6: Comparison of matrix and noun complement clause chunks 

 
 Matrix clause Sentence with noun complement clause 

 

 

 
 

# of chunks 

(G/j) 

8 chunks  

(0.13) 

16 chunks  

(0.06) 

 

 

 

Here we see that the unification chain for the matrix clause is associated with 8 chunks, quite a 

bit less than the number of chunks used in the processing of the noun complement clause 

sentence (16 chunks). According to the model of processing presented in Chapter 2, the number 

of chunks associated with a particular context affects the activation of chunks. During retrieval, 

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

NP-report-chunk

VP-declare-chunk

NP-fact-chunk

DP-the-chunk

CP-chunk

S-chunk

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

Comp-that-chunk

DP-the-chunk
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the processor retrieves the unification chains. The more chunks in the chain (i.e. the higher value 

of  j), the less activation each chunk receives (see the Total Activation Equation as explained in 

Chapter 2, section 3.3.2 and as discussed earlier in the current section). The reason for this is that 

there is a limited amount of cognitive resources for a goal G. This amount is constant and must 

be shared equally among the chunks in a context G/j. The amount of cognitive resources each 

chunk receives in turn affects the weight of each chunk Wj. Because the default value of G is 1, 

each chunk in the single clause sentence receives 0.13 of the cognitive resources for the goal, 

whereas each chunk in the noun complement clause sentence receives 0.06. Because each chunk 

in the noun complement clause sentence has less of the resources, the prime is less active than if 

it had received more of the resources. This lower activation makes the retrieval of the prime 

slower.  

 The model of language processing we are using predicts differences not only between 

single clause sentences and sentences with noun complement clauses but also between sentences 

with noun complement clauses and sentences with relative clauses. The reason these two 

sentences types should differ is that one contains an argument clause (i.e. the sentence with a 

noun complement clause) and one contains an adjunct clause (i.e. the sentence with a relative 

clause). The language processing model presented in Chapter 2 treats arguments and adjuncts as 

processed differently (Chapter 2, section 3.4.3). In particular, arguments occur in the same 

unification chains as their selectors, whereas adjuncts form distinct chains. PRICE predicts that 

this difference should have implications for priming, namely, primes that are associated with 

sentences that contain argument clauses (e.g. verb complement or noun complement clauses) 
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should demonstrate less priming than those that are associated with sentences with adjunct 

clauses (e.g. relative clauses) when time (recency) is held constant. Let us now explore this 

prediction by comparing priming from relative clauses to priming from noun complement 

clauses.  

 We begin with a sentence with a relative clause: 

(16) Prime in relative clause sentence 

 The king liked the duke [who promised the duchess the rubies]. 

 

 In this sentence, we start with the main goal in the control state buffer, ‘process sentence.’ This 

goal leads to the retrieval of an S-chunk, which in turn is sent to the problem state due to its open 

=DP and =VP values. The processing of these two values become subgoals of the problem state.  

The formation of the main goal’s subject DP and predicate VP proceed in a manner similar to the 

formations that occurred in the demonstrations above. The primary change is that different 

chunks (e.g. NP-king-chunk and VP-like-chunk) were retrieved leading to slightly different 

patterns (e.g. the building of a sentence with a transitive verb rather than a dative verb). Rather 

than step through each component of this process, I have provided the pattern of retrievals, 

poppings, and unifications for all chunks up to the relative clause. 
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unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

 

Note that the diagram above stops with the popping of NP2. Rather than moving to resolve the 

next subgoal already on the subgoal stack (i.e. ‘process DP,’ see Chapter 2, section 3.4 for 

demonstrations of the updating and resolution of subgoals via unification), the processor instead 

begins to process a RelC by generating the subgoals necessary for its processing. To denote this 

shift, I adopt new notation, namely the use of a dotted box around the heading ‘process RelC.’ 

This notation indicates that ultimately this unification chain is separate from the unification chain 

associated with the processing of the rest of the sentence.   

Note also that there is not an arrow (�) leading to the RelC-chunk from the NP-chunk. 

The reason for this is that the arrow denotes a retrieval based on features of the chunk currently 

in the problem state buffer. For example, if there is a DP-chunk with an open =NP value in the 

problem state buffer, the processor may retrieve an NP-chunk to satisfy the DP-chunk’s ‘process 

NP’ subgoal. I indicate the relationship between a subgoal in the problem state and a retrieval 

using the solid arrow. When the retrieved item does not have this type of relationship, I do not 

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : = NP1

isa : NP1

orth: king

!pop!-NP1
!pop!- DP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke

!pop!- NP2
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use the arrow. For example, if the problem state has the subgoal ‘process NP’, but an AdjP-

chunk is retrieved, its retrieval is not due or linked to a subgoal in the problem state buffer.  

Because the retrieval of the RelC-chunk in the current example differs from the example’s other 

retrievals in this respect, I do not use the normal retrieval notation. Furthermore, for ease of 

tracking, I distinguish between the rules necessary for the relative clause’s processing and those 

necessary for the matrix clause’s processing by not bolding the rules associated with the RelC-

chunk (e.g. ‘unify RelP with =RelP1  of RelC’) in the right-hand column in the diagram below.  

The processing of who leads to the retrieval of a RelC-chunk (i.e. a relative clause chunk) 

and a RelP-who-chunk. Both of these retrievals and the unification of the RelP-chunk and the 

RelC-chunk are shown below.  

 

  

unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

 

 

 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke

Process relative clause

isa : RelC

num  : sg

spec: RelP

comp : =S-gap

mod : =NP

isa : RelP

orth: who

!pop!-RelP
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Note that the RelC has not only a ‘spec’ and ‘comp’ feature but also a ‘mod’ feature. This ‘mod’ 

feature denotes the type of element the RelC modifies, i.e. a noun (=NP). The resolution of this 

feature-value pair, along with the resolution of the other open values (=RelP and =S-gap) must 

occur before the RelC can be popped. The S-gap-chunk is similar to the S-chunk used in 

previous examples. S-gap-chunks are used during the processing of clauses that are missing an 

explicit argument. For example, during the processing of a normal S-chunk, the processor 

predicts the processing of both a subject (DP) and a predicate (VP) as in “the queen drank the 

tea.”  However, when the processor processes an S-gap-chunk, it predicts that one of the 

arguments in the clause is gapped. For instance, in subject-relative clauses (e.g., “who __ drank 

the tea”) or in object relative clauses (e.g., “what the queen drank __”), there is a missing 

argument.  As such, an S-gap-chunk act as a cue for the retrieval of the dislocated item (Lewis & 

Vasishth 2005). This type of cue occurs not only for S-gap-chunks but also other types of 

chunks, e.g. VP-gap-chunks. The final resolution of these gaps depends in part on the unification 

of the open value in the ‘mod’ feature with a retrieved chunk of the appropriate type (e.g. an NP-

chunk for a RelC-chunk’s open =NP value in its ‘mod’ feature). 

Above, I presented the RelC-chunk and the RelP-chunk as already having been retrieved 

and unified, satisfying one of the RelC’s subgoals. I pick up below with the subgoal of 

processing the S-chunk.  
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unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

 

 

 

 

The retrieval of the S-gap-chunk sets into motion the chain of retrievals, poppings, necessary for 

satisfying its open values, similar to the way the S-chunks in the above demonstrations did, with 

a couple of differences. First, this chunk contains a ‘gap’ feature with the value ‘=NP’.  This 

feature-value pair denotes presences of a gap (“extraction site”) and the type of element that can 

satisfy the gap (Sag 2009). The second difference is that the ‘spec’ of the S-gap-chunk does not 

contain an open =DP value like the S-chunk. Rather, it value of the ‘spec’ is left unfilled, as 

denoted by the “ __.” This ‘empty’ position is ultimately saturated with the values associated 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke
Process relative clause

isa : RelC 

spec: RelP 

comp : =S-gap

mod : =NP

isa : S-gap

spec : __

comp : =VP2

gap : =NP
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with the gap feature, i.e. the values that satisfy the open =NP value in ‘gap.’.  

 Because the subject of the relative clause has been extracted (as denoted by the ‘spec : 

__’ and ‘gap : =NP’), the processor turns to resolving the subgoal ‘process VP.’ The processing 

of this VP is the same as the processing of the dative VP in the matrix and noun complement 

clause examples above, so I skip these processing steps and pick up with the unification of the 

completed VP with the open =VP value of the S-chunk. 

 

Unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

 

 

The gap-S-chunk then pops and becomes available for unification with the next subgoal. It 

unifies with the open =S value in the RelC-chunk, thereby satisfying the top-most subgoal. 

 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke
Process relative clause

isa : RelC 

spec: RelP 

comp : =S-gap

mod : =NP

isa : S-gap

spec : __

comp : promise the 

duchess the rubies

gap : =NP
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unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

 

 

There is only one open value left in the RelC-chunk (i.e. ‘mod : =NP), meaning that there is one 

more subgoal associated with the RelC chunk: ‘process NP.’ Because there is no currently active 

or popped NP that could unify with the RelC’s =NP, the processor retrieves the most active and 

relevant NP-chunk from long-term memory, in this case the NP-duke-chunk. This retrieval 

returns the same chunk as was retrieved earlier. This is denoted below by the arrow pointing to 

the NP-chunk. 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke
Process relative clause

isa : RelC 

spec: RelP 

comp : =S-gap

mod : =NP

isa : S-gap

spec : __

comp : promise the 

duchess the rubies

gap : =NP

!pop!-S-gap
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unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

 

The NP-duke-chunk has no open values, so it is popped and unifies with the open =NP in the 

RelC-chunk. 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke
Process relative clause

isa : RelC

spec: RelP

comp : gap: NP 

promise the duchess 

the rubies

mod : =NP
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unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

unify S2 with =S2 of RelC 

unify NP2 with =NP of RelC 

 

 

Once this unification has occurred, the gap list is saturated by the values associated with the NP-

duke-chunk.  To denote this, I use the index 1 as shown in the diagram below. This indexing 

indicates that the element associated with ‘gap’ feature of the S-gap-chunk is the NP-chunk that 

unified with the open =NP value of the RelC-chunk.  

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke

!pop!- NP2

Process relative clause

isa : RelC

spec: RelP

comp : gap: NP 

promise the duchess 

the rubies

mod : =NP
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The NP that was retrieved to satisfy the RelC-chunk’s subgoal ‘process NP’ has unified with the 

open =NP value in the RelC-chunk. As such, the processing of the specific NP-duke-chunk is 

complete, and its activation can begin to decay. Thus, I do not show it any longer but rather 

denote it via the indexing. All of the open values in the RelC-chunk are now filled. The subgoals 

associated with the processing of the RelC have all been resolved and the RelC-clause is popped. 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke

!pop!- NP2

Process relative clause

isa : RelC

spec: RelP

comp :            promise the

duchess the   

rubies

mod : 

1

1

1



196 

 

 

unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

unify S2 with =S2 of RelC 

unify NP2 with =NP of RelC 

 

 

 

 

Now that the RelC has been popped, the processor checks the buffers to see if it can unify with 

any of the open values in the chunk in the problem state buffer (i.e. the DP-the-chunk). The DP-

chunk does not have an open value that requires a RelC-chunk, so the RelC-chunk cannot unify 

with an element in the problem state and is sent to LTM. The processor moves to resolve the 

next subgoal on the subgoal stack, in this case the open =NP value of the DP-chunk. Now that 

this subgoal is reactivated, the processor needs to retrieve the appropriate NP-chunk, i.e. the NP-

duke-chunk. The bolded arrow (�) denotes this retrieval. 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke

!pop!-RelC

Process relative clause

isa : RelC

spec: RelP

comp :            promise the

duchess the   

rubies

mod : 

1

1
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unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

unify S2 with =S2 of RelC 

unify NP2 with =NP of RelC 

 

 

 

The NP-chunk is popped and unified with the open =NP value in the DP-chunk. The DP-chunk 

is then popped and unified with the open =DP value in the VP-chunk. Because both of these 

unification cycles produce forms that unify with the open values in the problem state, they form 

a chain. The chain they form is connected to the chain generated during the processing of the 

matrix subject. 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

isa : NP2

orth : duke
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unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

unify S2 with =S2 of RelC 

unify NP2 with =NP of RelC 

 

unify NP2 with =NP2  of DP2 

unify DP2 with =DP2  of VP1 

 

 

The VP-chunk pops and unifies with the open =VP value in the S-chunk. Because the unification 

of this VP-chunk and the subject DP (“the duke”) both satisfy open values in the same chunk, 

their unification chains are part of a single chain.  

 

 

unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

unify S2 with =S2 of RelC 

unify NP2 with =NP of RelC 

 

unify NP2 with =NP2  of DP2 

unify DP2 with =DP2  of VP1 

unify VP1 with =VP1  of S1 

 

 

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

!pop!-DP2

isa : NP2

orth : duke

!pop!- NP2

isa : S1

spec : the king

comp : =VP1

isa : VP1

orth: like

comp : the duke

Process sentence

!pop!-VP1
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The S-chunk’s open values are now resolved. It is popped and unifies with the main goal in the 

control state buffer, and then the sentence proceeds to LTM. 

 

unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

unify S2 with =S2 of RelC 

unify NP2 with =NP of RelC 

 

unify NP2 with =NP2  of DP2 

unify DP2 with =DP2  of VP1 

unify VP1 with =VP1  of S1 

unify S1 with control state 

 

Figure 3.8 below depicts all of the steps involved in processing the sentence “The king likes the 

lord who promised the duchess the rubies.” 

isa : S1

spec : the king

comp : like the duke

Process sentence

!pop!-S1
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Figure 3.8: Retrieval of chunks and rules for processing a sentence with a relative clause 

  
 

The sentence is associated with two unification chains. As such, the memory trace for the 

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : = NP1

isa : NP1

orth: king

!pop!-NP1
!pop!- DP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

!pop!-DP2

!pop!-VP1

!pop!-S1

isa : NP2

orth : duke

!pop!- NP2

!pop!-RelC

Process relative clause

isa : RelC

spec: RelP

comp : =S-gap

mod : =NP

isa : RelP

orth: whot

!pop!-RelP

isa : S-gap

spec : < >

comp : =VP2

gap : < NP>

isa : VP2

orth: promise

comp : =DP3

=DP4/PP

isa : DP3

orth: the

comp : =NP3

isa : NP2

orth : duchess

isa : DP4

orth: the

comp : =NP4

isa : NP4

orth : rubies

!pop!-NP3

!pop!-NP4

!pop!-DP3

!pop!-DP4

!pop!-VP2

!pop!-S-gap
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sentence has two parts: one that represents the processing of the matrix clause, one that 

represents the processing of the relative clause. These two unification chains along with their 

associated chunks are depicted in Table 3.7 below. 

Table 3.7: Unification chain and associated chunks for prime in relative clause 

Retrieved chunks Unification cycles 

 
 

 

 

Chain 1: 

unify NP1 with =NP1  of DP1 

unify DP1 with =DP1  of S1 

unify NP2 with =NP2  of DP2 

unify DP2 with =DP2  of VP1 

unify VP1 with =VP1  of S1 

unify S1 with control state 
 

 

 

 

 

 

 

 

 

 

Chain 2: 

unify RelP with =RelP1  of RelC 

unify NP3 with =NP3 of DP4 

unify DP3 with =DP3 of VP2 

unify NP4 with =NP4 of DP3 

unify DP4 with =DP4 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of RelC 

unify S2 with =S2 of RelC 

unify NP2 with =NP of RelC 

 

 

 

The important thing to note in the table above is the fact that the chunks used during the 

VP-like-chunk

NP-duke-chunk

DP-the-chunk

NP-king-chunk

S-chunk

DP-the-chunk

RelC-chunk

S-gap-chunk

RelP-who-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk
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generation of each chain are grouped separately, meaning all the chunks used during the 

formation of the matrix clause (Chain 1) are associated with the same chain, whereas those used 

during the formation of the adjunct clause (Chain 2) are associated with the same chain. 

According to the model of language processing presented in Chapter 2, the processor can retrieve 

these chains independent of one another. When the processor retrieves a particular chain, it needs 

to search through only the chunks associated with that chain to determine whether a particular 

chunk was retrieved. Cognitive resources are distributed over only the chunks associated with a 

particular chain. This means that if the processor retrieved Chain 2 for the relative clause “duke 

who promised the duchess the rubies,” i.e. the chain associated with the prime promised, each of 

the 9 chunks would receive 0.11 of the cognitive resources. This numeric value is similar to that 

which the chunks in the matrix clause received (0.13). Consider Table 3.8 below. Each column 

contains the chunks associated with unification chain in which the prime occurs.  
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Table 3.8: Comparison of matrix, noun complement, and relative clause unification chains 

 Matrix clause Sentence with noun 

complement clause 

Relative clause 

 

 

 
 

 

# of chunks 

(G/j) 

8 chunks  

(0.13) 

16 chunks 

(0.06) 

9 chunks 

(0.11) 

 

 The model of language processing presented in Chapter 2 further claims that differences 

are likely to arise between arguments and adjuncts. Given the three structural contexts we have 

covered thus far (matrix clause, noun complement clause, and relative clause), the claims are that 

(i) primes in matrix clauses lead to the quickest response times, (ii) noun complement clauses the 

slowest, and (iii) relative clauses somewhere between the two. Thus far, the response time data 

are in keeping with these predictions. 

 However, one aspect of PRICE’s claim did not hold true. The prediction that arguments 

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

NP-report-chunk

VP-declare-chunk

NP-fact-chunk

DP-the-chunk

CP-chunk

S-chunk

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

Comp-that-chunk

DP-the-chunk

NP-duke-chunk

RelC-chunk

S-gap-chunk

RelP-who-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk
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and adjuncts are inherently different did not hold for the verb complement clause primes. 

Response time for primes in verb complement clauses (average 732 msec) was not significantly 

different from response times for those in relative clauses (average 726 msec) or matrix clauses 

(average 726 msec). The response times for primes in verb complement clauses did, however, 

differ from response times for primes in noun complement clauses (average 761 msec). There are 

a couple of potential reasons for the response time difference between noun complement clause 

primes and verb complement clauses. Before I address the possibilities, consider the prime in the 

verb complement clause below. 

(17)  Prime in verb complement clause 

The report declared that the duke promised the duchess the rubies. 

According to the processing model presented in Chapter 2, the steps involved in processing (17) 

are virtually the same as those involved in process a similar sentence with a noun complement 

clause such as “The report declared the fact that the duke promised the duchess the rubies.”  The 

primary difference between the two is that the complement clause is an argument of a noun in 

one and a verb in the other. However, the processing of both types of complement clauses leads 

to the formation of a single chain for the entire sentence, rather than the multiple unification 

chains that are associated with the processing of sentence with a relative clause. 

Consider the pattern of retrievals, poppings, and unifications associated with the 

processing of sentence (17) in Figure 3.9 below:  

  



 

Figure 3.9: Retrieval of chunks and rules for 

 

 

Just as in the noun complement clause

complement clause’s processing links to the next cycle. 

cycle can satisfy an open value in 

unification chain. Each step involved in the processing of the sentence 

etrieval of chunks and rules for processing a verb complement clause

Just as in the noun complement clause’s processing, each unification cycle in the verb 

s processing links to the next cycle. That is, the product of one unification 

n the problem state buffer, thereby adding another link to the 

involved in the processing of the sentence follows directly from the 
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processing a verb complement clause 

 

s processing, each unification cycle in the verb 

That is, the product of one unification 

the problem state buffer, thereby adding another link to the 

follows directly from the 
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previous, and each popping and unification leads directly back into the problem state. 

 Table 3.9 below contains all the chunks and unification cycles involved in the verb 

complement clause prime’s (i.e. (17)) unification chain. 

Table 3.9: Unification chain and associated chunks for prime in noun complement clause 
Retrieved chunks Unification cycles 

 

unify NP1 with =NP1 of DP1 

unify DP1 with =DP1 of S1 

unify comp with =comp of CP 

unify NP3 with =NP3 of DP3 

unify DP3 with =DP3 of S2 

unify NP4 with =NP4 of DP4 

unify DP4 with =DP4 of VP2 

unify NP5 with =NP5 of DP3 

unify DP5 with =DP5 of VP2 

unify VP2 with =VP2 of S2 

unify S2 with =S2 of CP 

unify CP with =CP of VP1 

unify VP1 with =VP1 of S1 

unify S1 with the control state 

 

Here we see that the processing of the matrix clause and the complement clause results in a 

single unification chain. During subsequent retrieval of the chain, the processor needs to retrieve 

and search through this entire chain to verify whether the prime occurred. The notable difference 

between this verb complement clause example and the noun complement clause example is that 

the noun complement clause has two additional unification cycles and two additional chunks. 

NP-report-chunk

VP-declare-chunk

S-chunk

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

CP-chunk

Comp-that-chunk

DP-the-chunk
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Table 3.10 compares the chunks retrieved during the processing of the prime and the unification 

chain that primes are associated with for all four clause types. 

Table 3.10: Comparison of all structural context types 

 Matrix clause Sentence with noun 

complement clause 

Relative clause Sentence with verb 

complement clause 

 

 

 
 

 

 

# of chunks 

(G/j) 

8 chunks  

(0.13) 

16 chunks 

(0.06) 

9 chunks 

(0.11) 

14 chunks 

(0.07) 

 

Here we see that the prime in the matrix clause example has the fewest associated chunks, and 

the prime in the noun complement clause example has the most. The other examples fall 

somewhere between, with relative clauses more similar to matrix clauses and verb complement 

clauses more similar to noun complement clauses.  

The number of chunks helps determine how much activation each chunk receives: the 

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

NP-report-chunk

VP-declare-chunk

NP-fact-chunk

DP-the-chunk

CP-chunk

S-chunk

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

Comp-that-chunk

DP-the-chunk

NP-duke-chunk

RelC-chunk

S-gap-chunk

RelP-who-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

NP-report-chunk

VP-declare-chunk

S-chunk

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

CP-chunk

Comp-that-chunk

DP-the-chunk
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more chunks, the less activation per chunk. Assuming that the amount of cognitive resources is 

constant and equally divided among the chunks, we can approximate how much activation a 

chunk does or does not receive. Primes in the verb complement clauses and noun complement 

clauses receive similar amounts of activation (0.07 and 0.06 respectively). However, there is still 

a significant difference between the two complement types’ response times. 

 There are at least two reasons why lexical priming from verb complement clauses and 

noun complement clauses may differ. One potential reason stems from the nature of complex 

noun phrases like the ones used in this experiment. Previous research has argued that complex 

noun phrases can create islands that limit the extraction of elements and make processing 

generally more difficult (e.g. Ross 1967, Haegeman1991, Lasnik 1999, Kromann 2004). For 

example, consider the sentences in (18)-(20), each of which is an example of one of the sentence 

types discussed early in this section. The extraction of one of the prime verb’s arguments is 

allowed from a matrix clause position (18) and from a verb complement clause (19). However, 

extraction is not allowed from a noun complement clause (20).  

(18)      Extraction (matrix clause) 
The duke promised the duchess the rubies. 

      What did the duke promise the duchess __? 

 

(19)      Extraction (verb complement clause) 
The report declared that the duke promised the duchess the rubies. 

      What did the report declare that the duke promised the duchess __? 

 

(20) Extraction (noun complement clause) 
 The report declared the fact that the duke promised the duchess the rubies. 

      What did the report declare the fact that the duke promised the duchess __? 

 

 

The same features that make extraction difficult may also inhibit priming. This possibility is 
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discussed again in Chapter 5. 

 The second possibility is more closely associated with the PRICE claim by maintaining 

the distinction between arguments and adjuncts but adding one stipulation. The difference 

between noun and verb complement clauses arises because the effects of additional chunks are 

exponential and not linear. The amount of the cognitive resources G may be allotted equally 

among the chunks in the context. However, this does not entail that the effects of additional 

chunks is linear. One reason to think that each additional chunk compounds the response times is 

that other retrieval tasks also display exponentially increased reaction times. For example, the 

Fan Effect, as reported by Anderson (1974), leads to an exponential increase in reaction times. 

The basic finding of the fan effect is that the more facts that participants learn about a particular 

concept, the slower their response time to a particular fact about the concept is. Lewis and 

Anderson (1976) found that although there wasn’t a large increase in response times following 

one additional fact, the addition of two extra facts added approximately 1000 msec to the 

response time and three additional facts 2000 msec. Although this suggests a linear function after 

a larger initial leap for each additional fact, it is not clear that the same linear-nature applies to 

the addition of chunks.  Anderson and Reder (1999) argue that the latency for a chunk’s retrieval 

is “an exponential function of the amount of activation reaching [the] chunk,” and this amount of 

activation is affected by the number of other chunks (or bits of information) associated with the 

target chunk (p 186). Thus, it is possible that additional chunks affect response times 

exponentially.  

This fan effect helps to explain what is occurring with the retrieval of the prime during 
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the verification task reported in section 4. When the number of chunks associated with a 

unification chain increases, the processor must take more time checking each chunk to determine 

whether the prime occurred or not due to lower activation. Previous research in language 

processing estimates the time for a rule firing is 50 msec, and the latency associated with chunk 

retrieval is a factor of 0.14 (Lewis & Vasishth 2005), but it is not clear how long it should take to 

retrieve a chunk, verify whether it matches a target word on a computer screen, and hit a button. 

For the time being, let’s say that the initial cost of retrieving a chunk in a chain is 5 msec, 

and the cost associated with checking each chunk is 0.25. I use the formula � =  (1 + �)� 

where T refers to the response time, B refers to the time necessary to retrieve a chunk, c refers to 

the addition cost associated with checking a chunk, and n refers to the number of chunks the 

processor must check. If we take the baseline response time that is needed to check 8 chunks as 

our starting point, we can begin to add the time associated with checking each additional chunk. 

Checking 8 chunks takes approximately 726 msec. Using the formula above, cost associated with 

checking the first additional chunk be  

5 (1 + .25)	 = 6.25 msec 

and for checking the second chunk 

5 (1 + .25)�= 7.81 

and so forth. Given this, we can estimate how much slower the processing of each of the 

structural contexts associated with the prime should be relative to the matrix clause baseline.  

Relative clauses have 1 more chunk than matrix clauses in the stimuli used in the 

experiment (see section 3.1 for a description). Using the exponential function, the response times 
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should be 6.25 msec slower for primes in relative clause, leading to a predicted lag of 

approximately 732 msec. Verb complement clauses have 6 additional chunks, which add 19.1 

msec, leading to an estimated response time of approximately 748 msec. Noun complement 

clauses have 8 additional chunks, adding 29.8 msec, placing the estimated response time at 

approximately 759 msec.  

This pattern of growth is similar to what the results found. Primes in verb complement 

clauses were, on average, 6 msec slower (732 msec) than the baseline (726 msec), and primes in 

noun complement clauses were approximately 37 msec slower (761 msec).  If the effect of 

checking through each chunk is exponential, then the additional two chunks may have been 

enough to make the primes in noun complement clauses significantly less accessible. I return to 

this point in Chapter 5. For the time being, one thing we know for certain is that primes 

occurring in different structural contexts lead to different amounts of priming. PRICE contends 

that these differences arise due to the way the primes were processed.  

 

6. Conclusion 

The results from the response time data in this study suggest that primes in noun complement 

clauses do not facilitate identification as much as those occurring in any of the other three 

structural contexts considered in the experiment reported in section 4. The processing model 

presented in Chapter 2 predicts that the retrieval of chunks depends on the amount of 

interference a chunk experiences from its context and its base activation level. A chunk’s base 

activation weight is sensitive to how recently the chunk was processed, whereas the amount of 
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interference is sensitive to how many other chunks occurred in the context.  

 In the current experiment, time was held constant, so the base activation level for each 

prime should have been the same. The only thing that varied was the structural context in which 

the prime occurred. The prime’s structural context is best identified by the unification chain it is 

associated with. These chains become units in memory that are retrieved in whole. Each 

unification chain is associated with the chunks used during the formation of the chain. The 

longer the chain, the more chunks. The more chunks, the greater the interference.  This 

interference arises because the chunks must share limited cognitive resources. When there are 

more chunks, each chunk gets less of the resources, weakening the activation of any one chunk. 
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Appendix 3A: Experimental items for the lexical priming study 

Below, NCC stands for Noun Complement Clauses, and VCC stands for Verb Complement Clauses. 

 

Bought 

1. Matrix The manager left the request, and the secretary bought the supplies for the owner. 

 NCC  The manager reported the fact that the secretary bought the supplies for the owner. 

 VCC  The manager revealed that the secretary bought the supplies for the owner. 

 Relative The manager liked the secretary who bought the supplies for the owner 

 

2. Matrix The reporter smiled, and the agent bought the diamonds for the singer. 

 NCC  The reporter stated the fact that the agent bought the diamonds for the singer. 

 VCC  The reporter revealed that the agent bought the diamonds for the singer. 

 Relative The reporter kissed the agent who bought the diamonds for the singer. 

 

3. Matrix The patient slept, and the doctor bought the cocktail for the surgeon. 

 NCC  The patient stated the fact that the doctor bought the cocktail for the surgeon. 

 VCC  The patient revealed that the doctor bought the cocktail for the surgeon. 

 Relative The patient met the doctor who bought the cocktail for the surgeon. 

 

4. Matrix The man nodded his head, and the clerk bought the cigar for the salesman. 

 NCC  The man believed the fact that the clerk bought the cigar for the salesman. 

 VCC  The man revealed that the clerk bought the cigar for the salesman. 

 Relative The man saw the clerk who bought the cigar for the salesman. 

 

Offered  

1. Matrix The mother thanked the maid, and the father offered the sweater to the butler. 

 NCC  The mother stated the fact that the father offered the sweater to the butler. 

 VCC  The mother revealed that the father offered the sweater to the butler. 

 Relative The mother hugged the father who offered the sweater to the butler. 

 

2. Matrix The nurse typed, and the intern offered the files to the dentist. 

 NCC  The nurse reported the fact that the intern offered the files to the dentist. 

 VCC  The nurse revealed that the intern offered the files to the dentist. 

 Relative The nurse saw the doctor who offered the files to the dentist. 

 

3. Matrix The journalist smirked, and the agent offered the bonus to the actress. 

 NCC  The journalist reported the fact that the agent offered the bonus to the actress. 

 VCC  The journalist revealed that the agent offered the bonus to the actress. 

 Relative The journalist visited the agent who offered the bonus to the actress. 

 

4. Matrix The editor napped, and the judge offered the award to the writers. 

 NCC  The editor stated the fact that the judge offered the award to the writers. 

 VCC  The editor revealed that the judge offered the award to the writers. 

 Relative The editor dated the judge who offered the award to the writers. 

 

Passed  

1. Matrix The customer sat down, and the host passed the menu to the waiter. 
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 NCC  The customer stated the fact that the host passed the menu to the waiter. 

 VCC  The customer revealed that the host passed the menu to the waiter. 

 Relative The customer knew the host who handed the menu to the waiter. 

 

2. Matrix The salesman smiled, and the executives passed the contract to the owner. 

 NCC  The salesman believed the fact that executives passed the contract to the owner. 

 VCC  The salesman revealed that the executives passed the contract to the owner. 

 Relative The salesman greeted the executives who passed the contract to the owner. 

3. Matrix The sister pouted, and the brother passed the pencil to the cousin. 

 NCC  The sister reported the fact that the brother passed the pencil to the cousin. 

 VCC  The sister revealed that the brother passed the pencil to the cousin. 

 Relative The sister liked the brother who passed the pencil to the cousin. 

 

4. Matrix The women gathered, and the florist passed the roses to the matron. 

 NCC  The women believed the fact that the florist passed the roses to the matron. 

 VCC  The women revealed that the florist passed the roses to the matron. 

 Relative The women admired the florist who passed the roses to the matron. 

 

Issued  

1. Matrix The station received the call, and the policeman issued the ticket to the poet. 

 NCC  The station reported the fact that the policeman issued the ticket to the poet. 

 VCC  The station revealed that the policeman issued the ticket to the poet. 

 Relative The station commended the policeman who issued the ticket to the poet. 

 

2. Matrix The mayor made a speech, and the judge issued the verdict to the lawyer. 

 NCC  The mayor stated the fact that the judge issued the verdict to lawyer. 

 VCC  The mayor revealed that the judge issued the verdict to the lawyer 

 Relative The mayor spoke with the judge who issued the verdict to the lawyer. 

 

3. Matrix The CIA agreed, and the FBI chief issued the jacket to the agent. 

 NCC  The CIA reported the fact that the FBI chief issued the jacket to the agent. 

 VCC  The CIA revealed that the FBI chief issued the jacket to the agent. 

 Relative The CIA scolded the CIA chief who issued the jacket to the agent. 

 

4. Matrix The executive approved, and the banker issued the receipt to the client. 

 NCC  The executive believed the fact that the banker issued the receipt to the client. 

 VCC  The executive revealed that the banker issued the receipt to the client. 

 Relative The executive hired the banker who issued the receipt to the client. 

 

Sold  

1. Matrix The butler went to the market, and the baker sold the pastry to the nanny. 

 NCC  The butler believed the fact that the baker sold the pastry to the nanny. 

 VCC  The butler revealed that the baker sold the pastry to the nanny. 

 Relative The butler liked the baker who sold the pastry to the nanny. 

 

2. Matrix The evidence was suppressed, and the employer sold the product to the dealer. 

 NCC  The evidence supports the fact that the employer sold the product to the dealer. 

 VCC  The evidence revealed that the employer sold the product to the dealer. 
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 Relative The evidence exposed the employer who sold the product to the dealer. 

 

3. Matrix The participant agreed, and the professor sold the photo to the journal. 

 NCC  The participant reported the fact that the professor sold the photo to the journal. 

 VCC  The participant revealed that the professor sold the photo to the journal. 

 Relative The participant revealed that the professor sold the photo to the journal. 

 

4. Matrix The man read the label, and the grocer sold the rabbit to the butcher. 

 NCC  The man stated the fact that the grocer sold the rabbit to the butcher 

 VCC  The man revealed that the grocer sold the rabbit to the butcher. 

 Relative The man emailed the grocer who sold the rabbit to the butcher. 

 

Showed  

1. Matrix The agent called the dealer, and the writer showed the poem to the critic. 

 NCC  The agent believed the fact that the writer showed the poem to the critic. 

 VCC  The agent revealed that the writer showed the poem to the critic. 

 Relative The agent called the writer who showed the poem to the critic. 

 

2. Matrix The columnist gossiped, and the curator showed the drawing to the artist. 

 NCC  The columnist reported the fact that the curator showed the drawing to the artist. 

 VCC  The columnist revealed that the curator showed the drawing to the artist. 

 Relative The columnist interviewed the curator who showed the drawing to the artist. 

 

3. Matrix The activist protested, and the solider showed the orders to the pilot. 

 NCC  The activist stated the fact that the solider showed the orders to the pilot. 

 VCC  The activist revealed that the solider showed the orders to the pilot. 

 Relative The activist emailed the solider who showed the orders to the pilot. 

 

4. Matrix The MBA studied, and the PhD showed the soda to the speaker. 

 NCC  The MBA believed the fact that the PhD showed the soda to the speaker. 

 VCC  The MBA revealed that the PhD showed the soda to the speaker. 

 Relative The MBA liked the PhD who showed the soda to the speaker. 

 

Handed  

1. Matrix The chef cooked the sauce, and the waitress handed the chicken to the author. 

 NCC  The chef stated the fact that the waitress handed the chicken to the author. 

 VCC  The chef revealed that the waitress handed the chicken to the author. 

 Relative The chef knew the waitress who handed the chicken to the author. 

 

2. Matrix The supervisor ordered the sheets, and the helper handed the blanket to the marine. 

 NCC  The supervisor reported the fact that the helper handed the blanket to the marine. 

 VCC  The supervisor revealed that the helper handed the blanket to the marine. 

 Relative The supervisor called the helper who handed the blanket to the marine. 

 

3. Matrix The landlady lost the bedding, and the renter handed the pillow to the landlord. 

 NCC  The landlady believed the fact that the renter handed the pillow to the landlord. 

 VCC  The landlady revealed that the renter handed the pillow to the landlord. 

 Relative The landlady trusted the renter who handed the pillow to the landlord. 
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4. Matrix The coach nodded, and the therapist handed the needle to the athlete. 

 NCC  The coach stated the fact that the therapist handed the needle to the athlete. 

 VCC  The coach revealed that the therapist who handed the needle to the athlete. 

 Relative The coach contacted the therapist who handed the needle to the athlete. 

 

Promised  

1. Matrix The architect wanted lunch, and the bricklayer promised the carrots to the builder. 

 NCC  The architect reported the fact that the bricklayer promised the carrots to the builder. 

 VCC  The architect revealed that the bricklayer promised the carrots to the builder. 

 Relative The architect hired the bricklayer who promised the carrots to the builder. 

 

2. Matrix The staff waited, and the employer promised the scissors to the usher. 

 NCC  The staff believed the fact that the employer promised the scissors to the usher. 

 VCC  The staff revealed that the employer promised the scissors to the usher. 

 Relative The staff admired the employer who promised the scissors to the usher. 

 

3. Matrix The teenagers wanted drinks, and the prom queen promised the sandwich to the escort. 

 NCC  The teenagers stated the fact that the prom queen promised the sandwich to the escort. 

 VCC  The teenagers revealed that the prom queen promised the sandwich to the escort. 

 Relative The teenagers ignored the prom queen who promised the sandwich to the escort. 

 

4. Matrix The announcer waited, and the spokesman promised the medal to the scholar. 

 NCC  The announcer reported the fact that the spokesman promised the medal to the scholar. 

 VCC  The announcer revealed that the spokesman promised the medal to the scholar. 

 Relative The announcer worked with the spokesman who promised the medal to the scholar. 
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Appendix 3B: Filler items for the lexical priming study 

The probe words are shown in the right-hand column. All comprehension questions are shown in italics with the 

sentence they followed. 

 
 Matrix filler sentences Probe  

1. The policeman liked the uniform, and the fireman loved the new red truck. hated 

 The policeman hated the uniform.  

2. The woman got ready, and the midwife put the soap by the bowl. delivered 

 The midwife did not put the soap by the bowl.  

3. The magician studied, and the assistant hung only the curtain on the rod. waited 

 The assistant hung the painting on the rod.  

4. The brick layer mixed the cement, and the welder melted the iron. hit 

 The brick layer did not mix any cement.  

5. The bassist found the pick, and the rock star brushed her hair. lost 

 The rock star found the pick.  

6. The snowboarder drank cocoa, and the skier licked the snow cone. sipped 

 Only the skier drank cocoa.  

7. Only the mailman slept in the van, and the courier climbed the stairs. trail 

 The courier slept in a van.  

8. Only the sailor napped, and the diver mended the suit. sailor 

 The diver napped.  

9. The professor ate the warm crumpets, and the dean drank the hot cappuccino. fire 

 The professor ate warm crumpets.  

10. The designer drew a picture, and the model drank the wine. found 

 The designer drew a picture.   

11. The hiker drank water, and the climber ate trail mix all day long. soda 

 The hiker drank water.  

12. The cat ran across the street, and the car hit the tree with a thud. truck 

 The car hit the tree.  

13. The baker kneaded the dough, and the chef stirred the stew. soup 

 The chef stirred the stew.  

14. The widower did not wait, and the monk pinned the cloth to the statue. sewed 

 The widower didn’t wait.  

15. The cop wrote the report, and the lab washed the crime scene. lab 

 The cop wrote a report.  

16. The sheriff waited patiently, and the deputy crushed the peanuts. peanuts 

 The deputy crushed some peanuts.  

17. The clown drove a small car, and the cowboy rode the wild American mustang. waited 

18. The dietitian baulked, and the chef did not wash the fat off the pan. watched 

19. The vet prepared the shot, and the cat slept peacefully during the operation. needle 

20. The woman chose the song, and the pianist set the music on the bench. stirred 

21. The militia retreated, and the humanitarian wiped away the tears. dough 

22. The parents napped, and the toddler played with the puppy. woke 

23. The parents found the paper, and the friends wrapped the presents. pipes 

24. The banjo player drank coffee, and the cowboy stuck the fork in the beans. ironed 

25. The plumber found the pipes, and the carpenter twisted the screwdriver. slept 

26. The aunt went to the concert, and the uncle watched the movie. concert 

27. The censor gasped, and audience loved the performance. censor 

28. The conductor called the musicians, and the composer placed the score on the stand. called 
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29. The monk polished the silver, and the priest scratched the glass accidentally. silver 

30. The ship sailed away, and the pirate kissed the parrot sitting on the deck. parrot 

31. The teacher turned, and the undergraduate slipped through the door. teacher 

32. The son threw the paper away, and the garbage man picked up the trash. trash 

 

 Noun complement clause filler sentences Probe  

1. The waitress denied the fact that the senator drank the martini. held 

 The waitress confirmed the fact.   

2. The child doubted the fact that the vet mended the dog’s paw. paw 

 The child believed the fact.   

3. The students denied the fact that the lecturer climbed onto the stage. loved 

 The students admitted the fact.   

4. The chef had the belief that only the housewife crushed the garlic. had 

 The chef believed that the husband crushed the garlic.   

5. The astronaut denied the belief that the comet hit the spaceship. comet 

 The astronaut confirmed the belief.   

6. The neighborhood gossip held the belief that only the girl rode the bicycle. girl 

 The neighborhood gossip believed that everyone rode the bicycle.   

7. The swimmer expressed the belief that the lifeguard twisted the towel. students 

 The swimmer expressed a belief about the lifeguard.   

8. The newscaster announced the belief that the nun hit the clown. kicked 

 The newscaster made the announcement.  

9. The barber doubted the fact that the customer watched the final episode. believed 

 The barber doubted that the customer watched the final episode.   

10. The landlady denied the fact that the renter wiped down the walls. painted 

 The landlady denied the fact.   

11. The navigator announced the fact that the captain loved the sea. navigator 

 The navigator made an announcement.   

12. The matador held the belief that the coach hung the cape on the chair. matador 

 The matador held a belief about the coach.   

13. The tattletale announced the fact that the bully licked the lollipop. lollipop 

 The tattletale stated something about the bully.   

14. The princess held the belief that the servant pinned the drapes closed. scissors 

15. The guitarist had the belief that the drummer scratched the instrument. bass 

16. The instructor denied the fact that the company put the stock in the market. president 

17. The barber doubted the fact that the apprentice washed the scissors. water 

18. The teacher had the belief that the children watched the documentary. saw 

19. The janitor expressed the belief that the landlord placed the trash in the can. lent 

20. The storyteller announced that the witch stirred the caldron. wiped 

21. The toddler denied the fact that the cat slipped passed the mother. drummer 

22. The waitress doubted the belief that the truck driver wrapped the string around his finger. placed 

23. The university president doubted the fact that the bursar picked the wrong name. paper 

24. The mother had the belief that children sleep best on silk. pan 

25. The performer expressed the belief that the play write kissed the manuscript. expressed 

26. The child had the belief that elves ate the cupcakes. child 

27. The paralegal doubted the belief that the mediator set the outline on the table. paralegal 

28. The newscaster announced the fact that the heat wave melted the ice caps. ice 

29. The diver expressed the belief that the shark scratched the boat. boat 

30. The editor did not hold the belief that the proofreader brushed up the writing. editor 

31. The gossip expressed the belief that the socialite played with her hair. hair 

32. The tree hugger held the belief that the hunter stuck the knife in the dirt. hunter 
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 Verb complement clause filler sentences Probe  

1. The duchess did not know that the lord ate the warm chocolate pudding. bake 

 The duchess knew the lord ate warm chocolate pudding.   

2. The biker knew that the hiker mended the ripped backpack. kissed 

 The biker did not know who fixed the backpack.   

3. Only the inmate announced that the warden crushed the uprising. riot 

 The guard announced that the warden crushed the uprising.   

4. The newscaster announced that that matador climbed into the stands. newscaster 

 The newscaster made an announcement about the matador.   

5. The miner declared that only the supervisor hit the door with his fists. hands 

 The miner stated something about the supervisor.   

6. The valet knew that the driver hung the keys on the rack. crushed 

 The valet knew what the driver did.   

7. The journal stated that the actor slipped on the ice. fell 

 The journal made a statement about the actor.   

8. The director reported that the stunt double swept the glass. reported 

 The director reported something that the stunt double did.   

9. The film producer announced that the critics watched the director’s cut. rapper 

10. The report declared that the diplomat rode the visiting president’s camel. trusted 

11. The bookkeeper declared that the child rode the tricycle in the store. climbed 

12. The king reported that the duke put the jewels in the tower. castle 

13. The cashier stated that the custodian washed the floors with the mop nightly. helped 

14. The steward reported that the passenger scratched the stewardess on the cheek 

intentionally. 

ranger 

15. The photographer stated that the dictator kissed the guard to thank him. hugged 

16. The translator announced that the diplomat slept all day long in the hotel. tower 

17. The quilter stated that the microwave melted the plastic container. froze 

18. The opposition party declared that the senator played with fire. ignite 

19. The voice coach declared that the vocalist picked the duet. whistle 

20. The laborer reported that the landscaper stuck the pitchfork in the mulch. scratched 

21. The announcer reported that the wrestler pinned the opponent against the ropes. won 

22. The scientist reported that the mouse drank the toxic chemicals. scientist 

23. The novelist declared that the publicist loved the new manuscript. declared 

24. The animator knew that the cartoonist put the sketches in the drawer. animator 

25. The lumberjack announced that the ranger placed the sign in the path. sign 

26. The disc jockey knew that the rapper kissed the Grammy. knew 

27. The novelist stated that the pianist stirred the audience’s emotions. pianist 

28. The inspector reported that the notary set the stamp in the drawer. report 

29. The pilot reported that the flight attendant wiped up the mess. pilot 

30. The toddler declared that the babysitter wrapped the blanket around the baby. blanket 

31. The bully stated that the child licked the spoon. stated 

32. The electorate stated that the politician twisted the truth. 

 

stated 
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 Relative clauses filler sentences Probe  

1. The operator did not call the widower who hung the diploma on the wall. glass 

 The operator called the widower.   

2. Only the mayor condemned the vandal who set the fire in the building. apartment 

 The governor condemned the vandal.   

3. The tutor did not thank the student who melted the butter in the pan. hammer 

 The tutor thanked the student.   

4. The fans loved the referee who swept the plate. home 

 The fans hated all the referees.   

5. The neighbors called the dogcatcher who twisted the rope. nurse 

 The dogcatcher did not twist the rope.   

6. The tailor married the dressmaker who crushed only the roach. bug 

 The dressmaker crushed the fly.  

7. The farmer did not pay the banker who drank the cheap alcohol. paid 

 The farmer paid the banker.   

8. The senator liked the governor who ate the last brownie. senator 

 The senator hated the governor who ate a brownie.   

9. Only the fireman helped the child who climbed the tree. helped 

 The policeman helped the child.   

10. The sheriff noticed the deputy who loved the mountain of paperwork. diploma 

 The deputy enjoyed all of the paperwork.   

11. The man trusted the plumber who hit the pipes with the hammer. loved 

 The man trusted the plumber.   

12. The newspaper interviewed the nun who mended the broken heart. monk 

 The newspaper interviewed the nun.   

13. The foreign correspondent called the translator who licked the stamp. letter 

 The translator licked a stamp.   

14. The beekeeper met the environmentalist who ate the eggplant. met 

 The environmentalist ate the eggplant.   

15. The zookeeper trusted the trainer who kissed the monkey on the head. monkey 

 The zookeeper trusted the trainer.   

16. The children smiled at the butler who wiped up the spilt milk. smiled 

 The children smiled.   

17. The patient thanked the nurse who wrapped the sprained wrist. thanked 

 The patient thanked the nurse.   

18. The consultant helped the man who put the money in the savings account. owed 

19. The celebrity dismissed the counselor who placed the tabloid in the trash. wrist 

20. The host noticed the guest who washed the dirty dishes in the sink. tub 

21. The street sweeper liked the garbage man who scratched the dog. rat 

22. The weaver knew the potter who slept in the apartment next to the gym. hired 

23. The doorman visited the renter who slept through the fire alarm. dishes 

24. The man fired the sleuth who slipped on the stairs. parents 

25. The politician wrote the loan officer who played with the investments. nun 

26. The choreographer hired the dancer who picked the expensive costume. stamp 

27. The seamstress met the quilter who stuck the pin in the cushion. dog 

28. The parents thanked the lifeguard who pinned the medal on the girl. lady 

29. The painter loved the reviewer who watched the old video daily. video 

30. The acrobat loved the clown who rode the purple elephant for ten miles. miles 

31. The queen thanked the prince who placed the treaty on the desk. thanked 

32. The clown saw the magician who stirred the children’s imaginations. saw 
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Appendix 3C: Instructions used for the lexical priming study 

 

Page 1: 

Welcome.   

 

In this experiment, you will hear sentences and then be asked to make judgments about them. It 

is important that you answer as quickly and accurately as possible.   

 

You will also be asked to determine whether a word that appears on the computer screen 

occurred in the sentence you just heard. 

 

You will see a “+” on the monitor. This is where the word will appear. After you hear the 

sentence, the “+” will disappear, and the word will appear in its place.  

 

If the word occurred in the sentence, press the key marked “YES.”  

If the word did NOT occur, press the key marked “NO.” 

 

Keep your right finger over the “YES” key and your left over the “NO” key at all times, so you 

can make quick responses.  

 

Page 2: 
On some trials, you will see a statement after the word task. After reading the statement, decide 

if it is true (“YES”) given the sentence you just heard or false (“NO”). 

 

If you answer incorrectly, you will see a red “X” on the screen. If you start to miss many 

questions, slow down and try to listen more closely to the sentences. 

 

There will be three breaks throughout the experiment. If you need to pause, please do so during 

these breaks.  

 

 

Page 3: 
That’s all there is to it.  Just to review, this is how the experiment goes: 

 

1. You will hear a sentence. 

 

2. You will see a word and will determine if it occurred in the sentence (“YES”) or not (“NO”). 

 

3. Sometimes you will see a statement after the word task and will need to determine if it is true 

(“YES”) or false (“NO”) given the sentence you just heard. 
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4. After you respond to the word task or the statement task, the computer will automatically play 

the next sentence. 

 

When the experiment is over, a screen will appear telling you to stop.  At that point, you should 

let the experimenter know you are finished. 

 

Again, please answer as quickly but as accurately as possible. 

If you have any questions about the procedure, ask the experimenter now. 

 

 

Page 4: 
You will now have a few practice sentences.  

If you need to change the volume, please do so during the practice slides. 

 

Page 5: 
You are now ready to begin the experiment. If you have any questions, please ask the 

experimenter now.   
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Appendix 3D: Diagrams of sentence processing and declarative chunks 

 

 
  

Declarative chunks used during processing

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

isa : NP1

orth: duke

isa : VP

orth: promise

comp : =DP2

=DP3/p

isa : DP2

orth: the

comp : = NP2

isa : NP2

spec : duchess

isa : DP3

orth: the

comp : = NP3

isa : NP3

spec : rubies

!pop!-NP1

!pop!-NP2

!pop!-NP3

!pop!-DP2

!pop!-DP3

!pop!-DP1

!pop!-VP

!pop!-S

Processing chain for matrix dative clause

SENTENCE: “The duke promised the duchess the rubies.”

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk
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Process sentence

isa : S2

spec : =DPe

comp : =VP2

isa : DP3

orth: the

comp : =NP3

isa : NP3

orth: duke

isa : VP2

orth: promise

comp : =DP4

=DP5/PP

isa : DP4

orth: the

comp : =NP4

isa : NP4

spec : duchess

isa : DP5

orth: the

comp : =NP5

isa : NP5

spec : rubies

pop-NP3

pop-NP4

pop-NP5

pop-DP4

pop-DP5

pop-DP3
pop-VP2

pop-S2

isa : CP

spec: =comp

comp : =S2

isa : NP2

orth: fact

comp : =0/CP

pop-CP

pop-NP2

isa : DP2

orth: the

comp : =NP2

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : =NP1

isa : NP1

orth: report

isa : VP1

orth: declare

comp : DP2/CP

pop-DP1 pop-NP1

pop-DP2

pop-VP1

pop-S1

Processing chain for a sentence with a dative verb in the internal complement of a noun

isa : comp

orth: that

pop-comp

isa : S

spec : =DP1

comp : = VP1

Declarative chunks used during processing

NP-report-chunk

VP-declare-chunk

NP-fact-chunk

DP-the-chunk

CP-chunk

S-chunk

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

Comp-that-chunk

DP-the-chunk

SENTENCE: “The report declared the fact that duke promised the duchess the rubies.”
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isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : = NP1

isa : NP1

orth: king

!pop!-NP1
!pop!- DP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

!pop!-DP2

Processing chain for a  sentence with an object-modifying relative clause with a dative verb

!pop!-VP1

!pop!-S1

SENTENCE: “The king likes the duke who promised the duchess the rubies.”

isa : NP2

orth : duke

!pop!- NP2

!pop!-RelC

Process relative clause

isa : RelC 

spec: RelP 

comp : =S-gap

mod : =NP

isa : RelP

orth: whot

!pop!-RelP

isa : S-gap

spec : __

comp : =VP2

gap : =NP

isa : VP2

orth: promise

comp : =DP3

=DP4/PP

isa : DP3

orth: the

comp : =NP3

isa : NP2

orth : duchess

isa : DP4

orth: the

comp : =NP4

isa : NP4

orth : rubies

!pop!-NP3

!pop!-NP4

!pop!-DP3

!pop!-DP4

!pop!-VP2

!pop!-S-gap

VP-like-chunk

NP-duke-chunk

RelC-chunk

S-gap-chunk

RelP-who-chunk

DP-the-chunk

NP-king-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

S-chunk

DP-the-chunk

DP-the-chunk

DP-the-chunk

Declarative chunks used during processing
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Process sentence

isa : S2

spec : =DP2

comp : =VP

isa : DP2

orth: the

comp : =NP

isa : NP2

orth: duke

isa : VP

orth: promise

comp : =DP3

=DP4/PP

isa : DP3

orth: the

comp : =NP

isa : NP3

spec : duchess

isa : DP4

orth: the

comp : =NP

isa : NP4

spec : rubies

pop-NP2

pop-NP3

pop-NP4

pop-DP3

pop-DP4

pop-DP2

pop-VP2

pop-S2

isa : CP

spec: =Comp

comp : =S2

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : =NP1

isa : NP1

orth: report

isa : VP1

orth: declare

comp : =DP2/CP

pop-DP1

pop-NP1

pop-CP

pop-VP1

pop-S1

Processing chain for a sentence with a dative verb in the internal complement of a verb

SENTENCE: “The report declared that the lord promised the duchess the rubies.”

isa : Comp

orth: that

pop-comp

Declarative chunks used during processing

NP-report-chunk

VP-declare-chunk

S-chunk

S-chunk

NP-duke-chunk

DP-the-chunk

VP-promise-chunk

NP-duchess-chunk

NP-rubies-chunk

DP-the-chunk

DP-the-chunk

CP-chunk

Comp-that-chunk

DP-the-chunk
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4 CHAPTER  

 

Structural Priming 
 

The existence of forgetting has never been proved: We only know that some things don’t  

come to mind when we want them. ~ Friedrich Nietzsche  

  
In Chapter Three, I presented evidence that lexical priming was affected by the structural context 

in which the prime occurred. Lexical primes that occurred in the clausal complement of nouns 

(henceforth noun complement clauses) did not facilitate subsequent recognition as much as 

primes in matrix clauses, relative clauses, or the clausal complement of verbs (henceforth verb 

complement clauses).  These findings suggest that the priming of lexical forms is sensitive to 

structural context, as claimed by PRICE: 

Priming According to RICE (PRICE) 

The processing of both a prime form and its structural context affects how the 

form is represented, and differences in these representations affect subsequent 

priming behavior. 

 

 In this present chapter, I continue to test PRICE’s contention that structural context mediates 

priming behavior. To do so, I explore another form of priming, STRUCTURAL PRIMING, i.e. the 

tendency to reuse recently encountered structural forms (Bock 1986b, inter alia). The reason for 

testing structural priming in addition to lexical priming is that the two forms of priming rely on 

different types of knowledge. Lexical knowledge is often treated as part of declarative 

knowledge, whereas structure building knowledge (e.g. the knowledge necessary for building a 
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VP containing a verb and two NP complements) is treated as part of procedural knowledge (e.g. 

Anderson 2005, Anderson & Lebiere 1998, Bock 1986b). As such, there may be differences in 

how structural context affects the two types of priming.  

 In what follows, I present data that demonstrate structural priming’s sensitivity to the 

larger structural context of the sentence in which the prime occurs. Specifically, I demonstrate 

that structural priming is possible from different structural contexts but that the strength of this 

priming varies over time for the different contexts. All of the structural contexts that I investigate 

support priming at short lags (i.e. when there is only one filler item, such as a sentence, between 

the prime and target). However, after a longer lag (i.e. when there are three filler items between 

the prime and target), primes embedded in verb complement clauses no longer demonstrated 

priming. These findings suggest that structural context affects structural priming, contrary to 

previous claims in the literature (e.g. Branigan, Pickering, McLean, & Steward 2006).  

 In section 1, I introduce the phenomena of structural priming and situate it within the 

current conflict between the Standard Account of Priming (SAP), i.e. that the larger structural 

context doesn’t matter, and priming according to RICE hypothesis (PRICE), i.e. that the 

processing of the larger structural context does matter. In section 2, I summarize the predictions 

of the two accounts and introduce the experiments meant to test these predictions. This is 

followed by Section 3, in which I present the first experiment (i.e. priming from various 

structural contexts after a short lag of one filler item) and a discussion of its results. Section 4 

presents the second experiment (i.e. priming from various contexts after a long lag of three filler 

items) and a discussion of the results as well as a comparison of the results from both 
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Experiment 1 and 2. Section 5 is a general discussion of the results and their implications 

followed by conclusions in section 6. 

 

1.    Structural priming 

Structural priming refers to speakers’ tendency to reuse recently encountered structural forms 

and is often assumed to help ease processing and to lead to long-term changes via implicit 

learning (Bock 1986b; Bock & Kroch 1989; Bock & Griffin 2000; Cleland & Pickering 2003; 

Ferreira 1996; Ferreira & Bock 2006; Frazier, Taft, Roeper, Clifton, & Ehrlich 1984; Levelt & 

Kelter 1982; Luka & Barsalou 2005). For example, speakers are more likely to describe a picture 

as in Figure 4.1 with a passive-voice sentence (e.g. “The house was struck by lightning”) 

following a passive voice priming sentence as in (1a) than following an active priming sentence 

as in (1b). 

(1a) Passive voice priming sentence 

The car was hit by the truck. 

 

(1b) Active voice priming sentence 

The truck hit the car. 

 

 

Figure 4.1: Target picture following passive voice or active voice prime 

 
 

Structural priming can be found in the absence of shared lexical, phonological, or semantic 
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features between the prime and target (Bock & Loebell 1990; Pickering & Branigan 1998, 1999). 

Structural priming occurs even when the prime and target NPs are not equally as complex (Fox 

Tree & Meijer 1999).
1
 It has been associated with a range of linguistic phenomena such as the 

dative alternation, passive/active voice, that-clauses versus infinitival complements, noun phrase 

structure, and the attachment position of prepositional phrases and relative clauses (Branigan, 

Pickering, & McLean 2005; Branigan et al. 2006; Cleland & Pickering 2003; Desmet & 

Declercq 2006; Griffin &Weinstein-Tull 2003; Potter & Lombardi 1998; Scheepers 2003). It has 

been found for both adults and children (Friederici, Schriefers, & Lindenberger 1998; 

Huttenlocher, Vasilyeva, & Shimpi 2004); in multiple languages such as English, Dutch, German 

(Desmet & Declercq 2006; Hartsuiker & Westenberg 2000; Scheepers 2003); in both naturalistic 

or corpus data and in experimental settings (Branigan, Pickering, & Cleland 1999; Dubey, 

Keller, & Sturt 2008; Gries 2005; Gries & Stefanowitsch 2004; Jaeger & Snider 2008; Levelt & 

Kelter 1982; Szmrecsanyi 2005; Tannen, 1987; Weiner & Labov 1983); and both in and between 

modes (Branigan, Pickering, & Cleland 1999; Hartsuiker & Westenberg 2000; Ledoux, Traxler, 

& Swaab 2007; Pickering, Branigan, & McLean 2002; Zervakis & Rubin 2002). Structural 

priming occurs regardless of whether the speaker produced the prime him- or herself or simply 

encountered it in the environment (Bock, Dell, Chang, & Onishi 2007; Boyland & Anderson 

1997; Huttenlocher, Vasilyeva, & Shimpi 2004; Thothathiri & Snedeker 2008). It occurs cross-

                                                 
1
 Fox Tree and Meijer (1999) had participants memorize target sentences and then read priming sentences. Both 

sentences contained a form of the dative alternation. The prime sentences had noun phrases with different levels of 

complexity. For example, the prime may have a relative clause as in “The nurse read the most recent letter to the 

soldier who was wounded” or just an adjectival phrase as in “The nurse read the most recent letter to the wounded 

soldier.” Participants then repeated back the target sentence. The recall of the memorized sentence’s alternation was 

influenced by the priming sentence’s alternation. That is, if the priming sentence was a DO, the memorized sentence 

was more likely to be recalled as a DO than if the priming sentence was a PD. This tendency was not affected by the 

complexity of the prime sentence’s DPs.  
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linguistically for Spanish-English bilinguals (Hartsuiker, Pickering, & Veltkamp 2004), Dutch-

English bilinguals (Desmet & Declercq 2006) and German-English bilinguals (Loebell & Bock 

2003) and has even been found in amnesiacs and aphasics (Ferreira, Bock, Wilson, & Cohen 

2008; Saffran & Martin 1997). Speakers are even sensitive to the overall frequency of the form 

(Kaschak 2007; Kaschak & Borreggine 2008; Kaschak, Loney, & Borreggine 2006). Structural 

priming is truly a robust and ubiquitous phenomenon (for a fuller review see Pickering & 

Ferreira 2008).  

 To date, most structural priming models have assumed that the relevant domains for 

primes are the constituents that comprise the particular alternations (as is explained in greater 

detail below). Branigan et al. (2006) refer to this as the ‘local account,’ which is captured by 

what I call the Standard Account of Priming (SAP):  

Standard Account of Priming (SAP) 

Having recently encountered a linguistic form increases the likelihood of that 

form’s subsequent reuse. 

  

Recall that the model of language processing presented in Chapter 2 contends that the processing 

of the structural context affects the way the processor organizes information and, subsequently, 

the way memory represents information. Differences between these representations ultimately 

affect the reuse of information. 

Priming According to RICE (PRICE) 

The processing of both a prime form and its structural context affects how the 

form is represented, and differences in these representations affect subsequent 

priming behavior. 

  

In Chapter 2 section 1, I presented evidence that structural context can affect the recall or 
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processing of linguistics elements. Specifically, focus constructions such as it-clefts and wh-

clefts can facilitate subsequent processing (Almor 1999; Almor & Eimas 2008; Birch, Albrecht 

& Myers 2000; Birch & Garnsey 1995; Foraker & McElree 2007; Morris & Folk 1998). Given 

this evidence, along with the results from the lexical study in Chapter 3, it would be surprising if 

the structural context in which a structural prime occurs does not influence the efficacy of the 

prime. More likely is that the way an entire sentence is processed affects the representation of all 

elements within it (lexical and structural), and this, in turn, affects priming behavior.   

 1.1 Standard account of structural priming   

 The majority of structural priming research has implicitly—and occasionally explicitly—

assumed a ‘localist’ account, i.e. that the relevant domain for a particular prime is the domain of 

the prime itself (e.g. Bock 1986b; Bock & Loebell 1990; Branigan, Pickering, McLean, & 

Stewart 2006; Kempen & Hoenkamp 1987; Pickering & Branigan 1998). Branigan et al. (2006) 

explicitly argue that the relevant domain for a prime includes only the constituents that constitute 

the particular prime structure and that changes to the overall sentence structure do not affect the 

efficacy of a prime within the sentence.   

 For example, if a structural prime is a VP structure, such as the VP structure below, only 

the constituents of the VP are relevant.  

 

That is, only the verb and the form of its arguments (the number of and syntactic type of the 

arguments), if any, are relevant to priming. The co-occurrence of other phrases or clauses not 
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directly a part of the structural prime are irrelevant. Consider one commonly studied example of  

VP-level structural priming: the DATIVE ALTERNATION, i.e. the variable ordering of objects 

following dative verbs such as give and show (Bock 1986b; Bock & Loebell 1990; Pickering & 

Branigan 1998, inter alia). This alternation allows speakers to describe the same situation using 

two different linguistic forms:
1
 either the DOUBLE OBJECT (DO) form as in (2), where the 

recipient (underlined) precedes the patient (in italics), or the PREPOSITIONAL DATIVE (PD) form as 

in (3), where the object precedes the recipient.  

 (2) Double Object 

  Seth showed the girl the comic book. 

 

 (3) Prepositional Dative 

  Seth showed the comic book to the girl. 

 

While there are multiple factors that influence a speaker’s choice of a particular alternate such as 

discourse status, animacy, and pronominal status (Bresnan 2007; Bresnan, Cueni, Nikitina, & 

Baayen 2007; Bresnan & Nikitina 2009; Doyle & Levy 2008; Green 1974; Oehrle 1976), one 

key factor is recent experience. If a speaker recently heard or produced a DO form, she is more 

likely to produce another DO than if she had just recently heard or produced a PD (e.g. Bock 

1986b) especially if the prime verb and the target verb are the same (Pickering & Branigan 

1998).  

 According to the localist account (henceforth the standard account of structural priming 

(SAP)), the domain for structural priming for an alternate of the dative alternation is the dative 

                                                 
1
 Although there is some debate about whether the alternates are truly synonymous (e.g. Gropen, Pinker, Hollander, 

Goldberg, & Wilson 1989; Pinker 1989; Levin 1993), I treat them as being truth-conditionally equivalent. The 

reason for doing so is that both alternates have the same truth conditions. For example, if it is true that “Stephen sent 

Biak the postcard,” then it is also true that “Stephen sent the postcard to Biak.” 



234 

 

verb and its arguments. Whether the dative verb and its arguments occur in a matrix clause or an 

embedded clause should not influence structural behavior. The standard account predicts that the 

double object primes in sentences (4) and (5) below should not differ from the double object 

prime in (2). 

 (4) Double object prime in complement clause 
  Gina knew [that Seth showed the girl the comic book.] 

 

 (5) Double object prime in relative clause 
  Gina liked the man [who showed the girl the comic book.] 

 

In (2), (4), and (5), the same double object prime (“showed the girl the comic book”) occurs in 

the same linear position (i.e. at the end of a sentence) but in different structural configurations 

(i.e. as the final verb phrase in a verb complement clause (4) and a relative clause (5)).   If the 

prime is simply the combinatory pattern associated with the double-object construction (V-DP-

DP, “showed the girl the comic book”), then only the pattern of dative verb, noun phrase, noun 

phrase is relevant.  Factors such as whether the structural prime occur in a verb complement 

clause or relative clause are irrelevant. 

 Pickering and Branigan (1998, henceforth P&B) present a standard account of this sort. 

The P&B model builds off of Roelofs’s (1992, 1993) conception of the lexicon, in which there is 

a network of representations for linguistic forms, such as nouns and verbs. These representations 

contain information at the word-form (e.g. specific morphological forms such as hands, handed, 

handing and the phonological representation) and the lemma level (e.g. an abstract representation 

associated with the meaning and the syntactic category such as HAND-verb), and the conceptual 

stratum (e.g. such as the concept ‘transfer’ associated with HAND).  
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Figure 4.2: Roelofs’s (1992, 1993) model of the lexicon 

 

 

 

P&B extend Roelofs’s model, adding another layer to the lemma stratum: combinatorial 

information (e.g. subcategorization frames). Just as there are links between word-form nodes and 

lemma nodes, so too are there links between lemma nodes and their combinatorial pattern nodes, 

as shown in Figure 4.3 below. 

HAND

‘transfer’

present

Dative 

Verb

SHOW

past

handedhands showedshows

Lemma stratum

conceptual stratum

word-form stratum

/d//n//h/

(lemma, syntactic 

category, agreement 

features)

(morphological and 

phonetic realization)
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Figure 4.3: P&B (1998) amended lemma stratum  

 

  

P&B proposes a model of structural priming in which the use (activation) of a lexeme 

(e.g. showed) affects the lemma node (e.g. SHOW) for that particular word form. Likewise, the 

use of a combinatorial pattern activates the node associated with it. These lemma and 

combinatorial nodes are linked and can be mutually activated (e.g. by the processing of the 

phrase “showed the girl the comic book”).  For example, following the processing of the 

sentence (2) (repeated below), the lemma node for the verb showed (i.e. SHOW) is activated (as 

denoted in Figure 4.4 by the bold circle). SHOW’s syntactic category, i.e. Dative Verb, is also 

activated as is the node for the combinatory pattern used in the sentence (i.e. for the DO’s 

HAND

present

Dative 

Verb

SHOW

past

DP,PP DP,DP
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DP,DP) and the links between nodes. 

 

 (2) Double Object 

  Seth showed the girl the comic book. 

 

 

Figure 4.4: The activation of nodes for “showed the girl the comic book” 

 
 

After processing (2), the category ‘Dative Verb’ node, the lemma HAND node, and the 

combinatorial DP,DP node all have heightened activation. As discussed in Chapter 2, section 

3.3.2, the activation of a form’s representation in long-term memory gives a boost to its 

activation weight, i.e. the history of use for a given form. This activation boost begins to wane 

after the form has been used and the processor has moved on to the next form or stage of 

processing. As the activation wanes (decays), the form’s activation weight is still likely to be 

higher than the weight of its alternates. This heightened activation makes it easier for the 

HAND

DP,PP DP,DP

Dative 

Verb
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processor to locate the form, and this, in turn, facilitates retrieval, leading to priming effects.   

 The P&B model of priming assumes that structural priming arises due to the activation of 

a lemma and the combinatory pattern nodes it associates with.  Like other activation-based 

models, P&B assume that after words are retrieved, they receive a boost in their activation 

weights and then are subject to a function of activation decay over time.  They extend this 

assumption to structural patterns and combinatorial forms. 

 The P&B model places a great deal of emphasis on the role of the lexicon and the 

similarity of structural priming to lexical priming unlike connectionist models of structural 

priming (e.g. Chang et al. 2006). These connectionist models approach structural priming as a 

form of error-based learning in which the weights associated with producing the different 

alternates are adjusted during processing. Exposure to the different alternates affect the 

likelihood of producing a particular alternate by raising the probability associated with the 

alternate. Thus, having processed a particular form (e.g. the PD dative) makes the processor 

more disposed to generating the same form. These types of models predict both long-term effects 

in which the overall frequency of a form’s use rises and also short-term effects in which the most 

recently encountered form affects priming. These two effects can be distinct: the first reflecting 

changes to the general baseline, the second reflecting the effects of the most recent tuning event.  

 Models such as P&B’s focus more on changes within and the activation of the lexicon. 

Because of their focus on spreading activation through the lexicon and the links between lexical 

nodes (e.g. hand) and combinatorial pattern nodes (e.g. DP,DP), P&B predict a much greater 

influence of the lexicon than the error-based, connectionist models. Specifically, they predict two 
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major effects: (i) that repeating the same verb increases priming
1
  and (ii) that priming may be 

short-lived. Their emphasis on repeated verbs means that when the prime and target are the same 

dative verb, the subsequent priming is greater due to strengthening of retrieval cues.  In other 

words, by reactivating the lemma for the prime word, both the lemma and the combinatorial 

pattern nodes receive additional activation, compounding the boost from the previous, recent 

activation. 

  Although their model emphasizes the role of lexical reactivation, it does not contend that 

such reactivation is necessary. The primed-for combinatory patterns are connected to other 

words and have activation weights independent of them. Other, similar words (e.g. other dative 

verbs) are also linked to the primed combinatorial node. This primed combinatorial node still has 

residual activation from its recent processing and can, therefore, increase the likelihood of its 

reuse with other verbs. For instance, consider the representation of the lexicon in Figure 4.5.  

                                                 
1
 Word repetition has been found to be relevant for priming, particularly lexical and semantic priming (see 

McNamara 2005 for discussion). 
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 Figure 4.5: SHOW and HAND in the lexicon 

 

 Here we see that the lemma for both SHOW and HAND are connected to the same combinatorial 

nodes (DP,PP and DP,DP) and the same syntactic form (Dative Verb).  After the processing of 

“showed the girl the comic book,” the links are active as shown in Figure 4.6.  

Figure 4.6: Activation after “showed the girl the comic book” 
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HAND
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Now, suppose the processor encounters the sentence fragment “Julie handed….” This fragment 

activates the lemma HAND, as shown in Figure 4.7.  

 Figure 4.7: Activation of nodes during the processing of “Julie handed…” 

  

 

Here we see a depiction of the lexicon upon hearing the word handed. Note that the HAND lemma 

is the most active node in the network (as denoted by the thick circle). However, SHOW and its 

connected nodes (i.e. Dative Verb and DP,DP) all have residual activation from the recent 

processing event. This residual activation boosts the activation of both the Dative Verb and—

crucially—the DP,DP node. The additional activation increases the likelihood of the reuse of the 

DP,DP combinatorial pattern, as shown by the bolded lines and circles in Figure 4.8. 

SHOW
HAND

DP,DP
DP,PP

Dative 

Verb
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Figure 4.8: Activation after processing “Julie handed…” 

 

Because DP,DP still has residual activation from the processing of “Seth showed the girl the 

comic book” (as shown by the lighter black line leading from DP,DP to SHOW)  it is more likely 

to be selected than its alternate form: DP,PP. Although this type of cross-lemma priming is 

possible, cases in which the same verb serves as the prime and target lead to greater structural 

priming, as predicted by P&B. This ‘repeated-verb’ effect has been found in numerous structural 

priming studies, but it may be a separate contribution of short-term, lexical priming rather than 

true structural priming because it tends to disappear after one intervening item, e.g. one filler 

item (Chang et al. 2006; Hartsuiker, Benolet, Schoonbaert, Speybroeck, & Vanderelst 2008; 

Pickering & Branigan 1998). However, important for our discussion of SAP and PRICE is the 

P&B assumption that only the lemma node and the activated combinatory pattern node are 

relevant for subsequent structural priming. The larger structural context in which the prime 

occurs should not affect priming behavior for the target form. 

SHOW
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DP,DP
DP,PP

Dative 
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 In keeping with the assumptions of the SAP, Branigan et al. (2006) found that changes to 

the ‘global’ syntax do not affect the behavior of dative primes. By ‘global’ structure, Branigan et 

al. refer to the “aspects of the sentence that do not form part of the [prime] structure” (p 976). 

Whether the prime occurs in a matrix clause or a verb complement clause or is preceded by an 

adverbial clause should not affect priming behavior. They found that structural context did not 

affect the amount of priming for alternates of the dative alternation. In their experiments, 

Branigan et al. presented speakers with prime sentences in which the prime occurred in either a 

matrix or an embedded position within sentences displaying various sentence patterns as in (6) – 

(9).  

 (6) Prime in matrix clause 
  The racing car driver showed the mechanic . . .  

 

 (7)    Prime in matrix clause of a sentence with an adverbial phrase 
  On Friday, the racing car driver showed the mechanic . . .  

 

 (8) Prime in matrix clause of a sentence with an adverbial clause 
  As the Anne claimed, the racing car driver showed the mechanic. . .  

  

 (9) Prime in verb complement clause 

  The report claimed that the racing car driver showed the mechanic…  

 

They found equal priming from matrix clause position for sentences such as (6), matrix clause 

position of sentences with introductory adverbial phrases and clauses (e.g. (7) and (8)), and 

embedded positions of sentences with verb complement clauses (e.g. (9)). Because the amount of 

priming was consistent across syntactic contexts, they concluded that a prime’s position in the 

larger structural context does not matter; only whether it occurs matters. They contend that, 

although speakers could attend to the larger structural context, they do not need to and, 
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furthermore, the larger structural context is not likely to affect priming behavior. 

 This is where the SAP and PRICE differ. PRICE contends that processing one unit 

interacts with the processing of other units and, thereby, affects priming behavior. Although both 

accounts make the same predictions for simple, single-clause sentences, such as (2) above (“Seth 

showed the girl the comic book”), they make different predictions about the effects of larger 

structural context on multi-clause sentences, such as (4) “Gina knew that Seth showed the girl 

the comic book.” 

 1.2 The RICE hypothesis and PRICE   

 A significant amount of work in structural priming supports the general claim that recent 

encounters with a particular form (e.g. DO datives) exert considerable influence over the next 

production. For example, the Pickering and Branigan (1998) and the Branigan et al. (2006) 

studies demonstrate the immediate effects of structural priming. Even studies that demonstrate 

long-term effects of repeated exposure (e.g. Kaschak 2007) have found that the most recently-

occurring form exerts additional pressure on the processor. For example, Kaschak (2007) found 

that participants’ baseline use of an alternate were affected by different amounts of exposure to 

the alternates but that the most recent prime had an separate, extra effect on priming behavior. In 

his experiment, participants received different amounts of DO or PD completions during a 

training phase. Then, they received a priming phase in which they completed prime fragments 

and target fragments. Although their overall use of an alternate reflected differences in the 

baselines presented during the training phases, the participants’ were still sensitive to the most 

recently-occurring prime type, i.e. they were more likely to produce a DO following a DO prime 
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than following a PD prime, even if PDs were more frequent in the training phase than DOs were.  

These findings, along with the findings of Branigan et al. (2006), indicate that the most recent 

encounter is particularly influential, suggesting that recency of experience predicts subsequent 

performance.  

 Studies, such as Branigan et al.’s (2006), take this recency account a step further by 

arguing that the effects of recency are insensitive to the larger structural context –that structural 

context is irrelevant. However, there is evidence that indicates that the larger structural context is 

relevant for predicting structural priming. Specifically, research with the attachment levels of 

relative clauses suggests that speakers attend to the global structure of prime sentences and 

match their productions to patterns larger than the localist account would predict. Scheepers 

(2003) and Desmet & Declercq (2006) demonstrate this sensitivity to ordering in their studies, 

which found that speakers could be primed for the attachment level of relative clauses. They 

argue that participants keep track of not only the phrases or clauses that comprise a sentence but 

also the structural relations among theses phrases and clauses. Specifically, they found that 

speakers were more likely to produce a high-attaching relative clause following high-attaching 

primes than following low-attaching primes. For example, Scheepers (2003) gave native German 

speakers priming sentence fragments such as (10) and (11) that primed for either a high- or low-

attachment. After completing these primes, speakers completed fragments such as (12), which 

allowed for either a high-attaching or low-attaching completion.  

 (10)  High-attaching prime 
  Die Assistentin verlas den Punktestand der Kandidatin, der . . . 

          “The assistant announced the score [mas,sing] of the candidate [fem,sing] that  

  [mas,sing]” 
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 (11)   Low-attaching prime 
  Die Assistentin verlas den Punktestand der Kandidatin, die … 

           “The assistant announced the score [mas,sing] of the candidate [fem, sing], that  

  [fem,sing]” 

 

 (12)  Target 

  Der Rentner schimpfte uber die Autorin der Flugblatter, die … 

           “The pensioner railed about the author [fem,sing] of the fliers [neut,plur] that 

  [?]” 

 

In primes (10) and (11), the gender of the pronoun prompts either a high-attaching or low-

attaching relative clause respectively. Scheepers found that speakers tended to match their 

productions for targets such as (12) to the prime’s form. He argues that because speakers are 

recreating the attachment levels of relative clauses, they are sensitive not only to particular 

structural forms but also to the structural position in which these forms occur. Furthermore, he 

contends that these preferences are not driven by semantics or pragmatics but instead by 

speakers’ sensitivity to larger structural patterns.   

 Desmet and Declercq (2006) found the same sensitivity with Dutch-English bilinguals. 

After the participants saw Dutch versions of primes like (10) – (11) above, they completed 

English target items. Here again, speakers tended to match their production to the form of the 

prime. High-attaching completions were more likely following high-attaching primes than 

following low-attachment primes.  This tendency to repeat larger, structural configurations 

suggests that speakers are sensitive to the way phrases are arranged in relation to one another, 

indicating that the processor tracks more than just the occurrence of a prime.  

 According to the SAP, structural priming stems from the activation of nodes and residual 
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activation of these nodes. This activation and subsequent retrievability is independent of the 

larger structural context. The model of language processing presented in Chapter 2 contends that 

the larger structural context in which the prime occurs affects priming behavior.  

P&B’s (1998) account treats structural priming as similar to the type of activation we saw 

in Chapter 3, where linguistic forms in declarative memory are activated and retrieved. I contend 

that structural priming involves the activation and retrieval of a certain type of procedural 

knowledge: production rules (Chapter 2, section 3.3). Structure building is determined by the 

patterns of rule firing used to process different combinatorial patterns. Specifically, the processor 

determines which pattern of retrievals, pushings, and poppings is most likely to accomplish a 

goal (e.g. ‘process sentence’) given previous experience and the current context. For example, 

when presented with the goal ‘process sentence,’ the processor is prepared to fire rules that 

retrieve DPs, VPs, and NPs. However, when presented with the goal ‘compute equation,’ the 

processor is prepared to fire rules that retrieve numbers and operations. Because structure 

building is a series of product rule firings, structural priming is a form of production rule priming 

rather than the sort of chunk—or ‘node’—priming displayed by lexical priming (see Chapter 3 

for discussion). 

The processing of a particular combinatorial pattern, such as an alternate (double object, 

prepositional dative) of the dative alternation, results in a series of production rule retrievals and 

firings. Because these patterns result from the application of numerous individual rules, the 

STRENGTH and UTILITY of individual rules play an important role in explaining the distribution of 

a certain combinatorial pattern (see Chapter 2, section 3.3.2 and Anderson 1993, 1995; Anderson 
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& Schuun 2000; Lebiere 1998, inter alia). A rule’s strength reflects a rule’s history, i.e. the 

frequency and recency of its use: 

 

Sp = ln � tj−d
�

��	
 

Production strength  

 
 

The strength of a production rule p is determined by how many times it has been used n along 

with the amount of time t of its most recent use j minus a function of decay d. During processing, rules 

with greater strength are more likely to be retrieved. However, strength is not the only factor the 

processor considers in the selection process. Utility also affects the likelihood of a rule’s use.   

 Utility is determined by estimating the expected gain associated with a rule minus the cost 

associated with the use of a rule as expressed in the formula below (Anderson 1993, 1995; Anderson 

& Schuun 2000; Liebere 1998):  

 

U = PG – C      Utility 
 

P stands for the probability of success, G for the value of the particular goal, and C for the cost 

associated with applying the rule. P is estimated using the formula 

 

P = qr/(1-(1-q)f)   Probability of success 
 

where q is the likelihood that the particular rule has its intended effect, r is the likelihood that the 

use of the rule leads to the completion of the larger goal, and f measures the decline in the 

probability of completing the goal if the rule fails. C is estimated using the formula  
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C = a + b    Associated cost  
 

where a is the cost of using the particular rule and b is the cost of using all the subsequent rules 

needed to achieve  the larger goal given the use of the particular rule.  

The processor derives the values of q and a from the rule itself, whereas r and b must be 

derived from the expected states and outcomes. To estimate the values of these expected states, 

the processor considers the processing that has already occurred and the amount of processing 

that is likely to occur before the completion of the goal. Thus, the rules with the highest utility 

scores are those with the highest likelihood of success and the lowest associated cost.  

In Chapter 2, section 3.3.2, I argued that utility is sensitive to context. The rules 

associated with processing a context determine how likely a particular rule’s retrieval is. As the 

processing difficulty increases, the likelihood of a particular rule’s use decreases. Given this, I 

propose that structural priming is sensitive both to recency of use—as reflected by a rule’s 

strength—and structural context—as determined by utility. 

In what follows, I take the structural context of a prime to be the unification chain that the 

prime is associated with. Unification refers to the operation that merges the information of two 

chunks to produce a new chunk that is equally as complex as or more complex than the two 

unified chunks (Chapter 2, section 3.4). The term ‘unification chain’ refers to the series of 

unification events, or ‘unification cycles,’ that occur in pursuit of completing a goal (Chapter 2, 

section 3.4.1). The importance of these chains is that they affect the way linguistic forms are 

represented in and retrieved from LTM. Rather than retrieving just the specific chunks or rules 
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used in a sentence, the processor retrieves the unification chains generated during the processing 

of the sentence.  The features of these chains (e.g. length) affect the ability of the processor to 

evaluate their contents and, hence, to use the information within them to estimate the utility of 

rules (or rule patterns) associated with the chains. The consequence of this is that rules that are 

associated with some chains have lower utility scores than those associated with other chains. I 

return to this point in section 5.  

 1.3 Summary of the SAP and PRICE   

 SAP and PRICE make different predictions about priming behavior from different 

sentence types and different structural contexts. According to SAP, only recency matters. 

Whether the primes occur in main clauses or in embedded clauses or in argument or adjunct 

clauses should not affect priming behavior. The larger structural context in which a prime occurs 

does not strengthen or weaken the priming. However, the PRICE account contends that the 

structural configurations in which primes occur do affect priming behavior.  

 

 2. Testing the predictions of the accounts 

The experiments discussed in this section explore structural priming behavior from different 

structural contexts. The experiments varied both the structural contexts in which the primes 

occur and number of filler tasks between the prime and target.  I examined four different 

sentence types:  

i) Sentences with introductory adverbial clauses and a matrix clause 

As the newspaper noted, the writer was born in January. 

 

ii) Sentences with verb complement clauses 
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The newspaper noted that the writer was born in January. 

 

iii) Sentences with subject-modifying relative clauses 

The writer who liked Lily was born in January. 

 

iv) Sentences with object-modifying relative clauses 

Lily liked the writer who was born in January.  

 

These sentence types were chosen to control for the linear position of the prime (i.e. 

always within the final clause of the sentence) while varying the structural contexts in which the 

prime occurred. In (i) and (iii), the prime occurs in a matrix clause. In (ii), it occurs in a verb 

complement clause, and in (iv) it occurs in a relative clause. I used sentences with introductory 

adverbial clauses (e.g. (i)) and verb complement clauses (e.g. (ii)) specifically to replicate 

Branigan et al.’s (2006) materials, whereas the use of sentences with relative clauses (e.g. (iii) 

and (iv)) allowed me to explore structural contexts that they did not examine. One reason to 

explore different contexts, such as relative clauses, is that processing of sentences with adjunct 

clauses (such as relative clauses) may affect structural priming behavior differently than the 

processing of sentences with argument clauses (such as verb complement clauses). 

 In addition to varying the structural contexts, I also varied the number of filler sentences 

or sentence fragments, as explained in section 2.1.2 below, between the prime and the target. In 

Experiment 1, only one filler item occurred between the prime and target. In Experiment 2, three 

items occurred between the prime and target. Using these different intervals allows us to explore 

the effects of structural priming over time.  

 2.1. Overview of the experiments 

For each of the following experiments, there were a few constant features. All of the 
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experiments used the same four sentence types (i.e. sentences with an introductory adverbial 

clause and a prime in the matrix clause, sentences with a prime in a verb complement clause, 

sentences with a relative clause and a prime in the matrix clause, and sentences with a relative 

clause and a prime in the relative clause) and the same set of primes, targets, and filler items. The 

only the factor that varied between Experiment 1 and Experiment 2 was the number of filler 

items between the prime and target.  

 In the experiments, participants were exposed to forms of the dative alternation in one of 

four complex sentences frames.
1
 By ‘complex sentences,’ I mean sentences that contain two 

clauses where one is structurally subordinate to the other (i.e. one matrix clause and one 

embedded clause). The four sentence types are shown in (13)-(16). The primed dative alternation 

is in brackets, the recipient/benefactor (indirect object) is in italics, and the patient (direct object) 

is in bold. The embedded clause is underlined. 

 (13)  Matrix position with adverbial clause 
   As the report disclosed, the mother [promised the child the ring].     

 

 (14)  Embedded in verb complement clause 
   The report disclosed that the mother [promised the child the ring].  

 

 (15)  Matrix position with relative clause 
  The mother who knew the neighbors [promised the child the ring].      

 

 (16)  Embedded in relative clause  
  The neighbors knew the mother who [promised the child the ring].  

  

Thus, the prime alternation occurs in two matrix positions ((13) and (15)) and two embedded 

positions ((14) and (16)). The prime in the verb complement clause (14) occurs in an argument 

                                                 
1
 Some of the prime sentences were adapted from previous studies such as Bock & Griffin 2000, Pickering & 

Branigan 1998, and Branigan et al. 2006. All of the experimental items are in Appendix 4A.   
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clause, whereas the prime in the relative clause (16) occurs in an adjunct clause. Recall that 

according to the model presented in Chapter 2, adjunct clauses form separate unification chains 

from other elements of the sentence, and because of this, sentences such as (15) and (16), which 

contain adjunct clauses, have more unification chains associated with them than sentences with 

argument clauses (e.g. (14)). PRICE claims that differences in the sizes of the unification chains 

that primes are associated with affect priming behavior. Thus, the presence of argument and 

adjunct clauses is relevant for predicting priming behavior. 

 I divided these four sentence types into two experimental conditions that are labeled 

according to the form of embedding in which the prime occurs in one of the two sentence types 

within each of the two experimental conditions: 

 Verb Complement Clause (VC) 

  Matrix position with adverbial clause 
   As the report disclosed, the mother [promised the child the ring].     

 

   Embedded in verb complement clause 
   The report disclosed that the mother [promised the child the ring].  

 

 Relative Clause (RC) 

  Matrix position with relative clause 

  The mother who knew the neighbors [promised the child the ring].      

 

  Embedded in relative clause  

  The neighbors knew the mother who [promised the child the ring].  

 

Henceforth, I refer to each of these experiment conditions as either the VC or RC condition. 

  2.1.1  Experimental items  

 I chose 16 dative verbs based on their collocations with DO and PD structures as 
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presented in Gries 2005.  Gries contends that most dative verbs do not have significant biases, 

with only 86 out of the 316 dative verbs in his corpus demonstrating a strong preference. When 

choosing the set of verbs to use, my primary goal was to make sure that there was a wide array of 

verbs with different biases. However, I avoided verbs, such as give, that are significantly biased 

toward one of the alternates. Of the verbs I chose, hand, pass, sell and throw tend to take PD 

completions and award, offer, show and teach tend to take DO completions. I assigned eight of 

the verbs to matrix position and eight to embedded positions as shown in (17) and (18) below. 

 (17) Matrix verbs:  award, buy, feed, issue, lend, pass, teach, throw 

 (18) Embedded verbs: bake, hand, offer, owe, promise, sell, serve, show 

For example, bake occurred inside the verb complement clause in the VC condition and in the 

relative clause in the RC condition. The nouns associated with the primes and the targets did not 

change across the two conditions, meaning that the external and internal arguments of a given 

dative verb were consistent.  In the VC condition, the verbs in the non-prime clauses for the 

prime and target sentences (e.g. the introductory adverbial clause or the embedding matrix 

clause) were taken from Branigan et al. (2006) and included verbs such as declare, reveal, and 

report. For the RC condition, the verbs used in the non-prime clauses of the prime and target 

sentences included verbs such as know, see, and marry.  

 Each of the two conditions (VC and RC) had two versions DO-matrix/PD-embedded and 

PD-matrix/DO-embedded. In these versions, the alternates were categorically associated with a 

specific structural position. For instance, either DO always occurred in matrix, or PD always 

occurred in matrix. Thus, there were a total of four versions: 
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 Table 4.1: Versions for VC and RC conditions 

Verb Complement Clause (VC) Relative Clause (RC) 

DO-PD DO-PD 

PD-DO PD-DO 

 

 Each participant was assigned to one of these four groups, such that they would see either DO in 

matrix position (with PD embedded) or PD in matrix position (with DO embedded) in either the 

VC or RC condition. Participants encountered stimuli corresponding to either the VC or RC 

conditions as in shown in Table 4.2.  

 

Table 4.2: Example of experimental materials 

Verb Complement Clause Condition 

Primes  

    Matrix  As the report disclosed, the diver [threw the coach the towel]. 

    Embedded  The report disclosed that the mother [promised the child the ring]. 

Targets  

    Matrix  As the paper declared, the pitcher . . .   

    Embedded  The paper declared that the lord . . . 

Relative Clause Condition 

Primes  

    Matrix  The diver who dated the trainer [threw the coach the towel].  

    Embedded  The neighbors knew the mother who [promised the child the ring].  

Targets  

   Matrix  The pitcher who loved the fans . . . 

   Embedded  The king liked the lord who . . . 

 

The primary tasks in the experiment were to read and complete sentences. In the READ task, 

participants read aloud whole sentences, which were either primes or fillers. In the COMPLETE 

task, participants completed experimental and filler sentence fragments aloud using a set of given 

words. There was always at least one filler item (either a READ or COMPLETE slide) between the 

prime and the target. Participants saw either one filler item between the prime and target 
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(Experiment 1) or three filler items (Experiment 2). An example of a prime-filler-target sequence 

for Experiment 1 is given in Figure 4.9.  

Figure 4.9: Example of prime-filler-target sequence 

 

 For all the COMPLETE slides (e.g. the rightmost slide marked ‘Target’ in the above Figure 

4.9), the verbs always occurred at the bottom of a list of two other words, which were either 

noun-adjective pairs (for some of the filler items) or a noun-noun pairs (for some of the filler 

items and all of the experimental ones). For the experimental COMPLETE slides, the ordering of 

the noun pairs was counterbalanced between and within subjects. For the filler COMPLETE slides, 

the nouns pairs or noun-adjective pairs were counterbalanced within subjects.  

 Previous research has found that the choice between DO and PD alternates is sensitive to 

factors including discourse features (e.g. the information status) of the two internal arguments of 

the dative verb, and morphological and phonetic characteristics (Bresnan & Nikitina 2009; Green 

1974; Oehrle 1976 inter alia). To help control for the effects of discourse status in the primes, all 

primes had definite NPs for the two internal arguments of the dative verb.  I attempted to control 

for the other aforementioned relevant factors in the targets by giving the participants noun-noun 

pairs for the experimental target items. These noun pairs were matched on four features: 

READ READ COMPLETE

As the report declared, 

the mother promised the 

child the ring.

The librarian somehow 

convinced the researcher 

to be quiet.

As the paper declared, 

the lord . . .

rubies

duchess

PROMISE

Prime Filler Target
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morphological complexity, segmental length, number of syllables, and frequency.
1
  

Primes and targets were matched such that the prime and target verbs and structural 

appeared in the same structural context (e.g., if a participant read promise in embedded position, 

she completed a target that had promise in embedded position). By controlling the features of the 

nouns and repeating the prime verbs and structural contexts, I tried to create target environments 

with as much overlap as possible in order to encourage priming while at the same time 

attempting to control for extraneous factors (e.g. syllable length). 

  2.1.2 Filler items  

 The filler items consisted of four sentence types with equal numbers of full sentences and 

sentence fragments for each type.
2
 The same set of fillers was used in all of the studies. The four 

sentence types were two-place predicates (19), object-control sentences (20), finite clause 

complements (21), and where-clause sentences (21). 

(19) Two-place predicate filler item 
 The couple put the gifts in the closet. 

 

(20) Object-control filler item 

  The father persuaded the girl to be patient. 

 

(21) Finite clause complement filler item 

 The clique believed that the substitute was cool. 

 

(22) Where-clause filler item 

 The lawyer knew where the documents were. 

 

 Verbs occurring in the filler sentences also occurred in a subset of the filler fragments used in 

                                                 
1
  Ratings for these factors were obtained from CELEX (Baayen, Piepenbrock, & Gulikers 1995). Overall, the direct 

objects and indirect objects did not significantly differ in frequency, morphological complexity, or segmental length. 

All of the nouns were matched for number of syllables, ranging from one to three syllables. 
2
 All of the filler items are given in Appendix 4B. 



258 

 

the COMPLETE slides (e.g. “The sergeant encouraged . . . recruits/ active/BE”). The fillers were 

randomized and grouped into 18 blocks of 4 items (either full sentences or sentence fragments). 

Each block also contained one prime-target pair. 

  2.1.3 Instructions  

 Participants were told that they would perform three tasks: reading sentences, completing 

partial sentences, and taking a memory test at the end of the experiment.
1
 This memory task was 

mentioned to distract participants from the real manipulation and to encourage them to attend to 

the sentences they were reading and completing. It was, however, never given. Participants were 

instructed to read the READ slides aloud as accurately as possible. For the COMPLETE slides, they 

were told they would first see a partial sentence, and then after hitting the space bar, they would 

see a list of three words. The bottom word in all capital letters was to be the primary verb of the 

second part of the sentence. They were told that they had to use all three of these words in their 

completion but could change the tense of the verb or ordering of the words and could add articles 

or prepositions as necessary. They were further warned that they should not do more than what 

was necessary.  

 The participants used a set of training materials to familiarize themselves with the 

reading and completing tasks. During the practice set, if the participants had questions or failed 

to use all the words correctly, they were reminded of the instructions. After the training, they 

began the testing phase, which was recorded for subsequent analysis. Participants were recorded 

individually in a sound-attenuated booth. 

                                                 
1
 The instructions given to participants are in Appendix 4C. 
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3. Experiment 1: The short-term effects of structural context on structural priming       

Experiment 1 had two primary goals: (i) to replicate Branigan et al.’s (2006) findings using a 

different methodology and (ii) to extend their research to different forms of embedding (i.e. 

relative clauses).  In Branigan et al. 2006, participants completed partial sentences that were 

meant to prime for either a PD or DO completion such as (23) and (24).  These primes were 

immediately followed by a target item that would allow for either completion (e.g. (25) and 

(26)).  

Prime types in Branigan et al. 2006: 

(23)  Matrix PD-inducing prime 
  The racing driver showed the torn overall . . .  

 (24)  Embedded PD-inducing prime 
  The report claimed that the racing driver showed the torn overall . . . 

 

Target types in Branigan et al. 2006: 

 (25)   Matrix target 
  The patient showed . . . 

 (26)  Embedded target 
  The rumors alleged that the patient showed . . . 

 

Over the course of their studies, they varied the structural context of the prime and target such 

that each pairing was tested. In my experiment, I departed from their design in three significant 

ways. First, one filler item was placed between the prime and target to minimize the possible 

contribution of strictly lexical priming while still allowing for some amount of overlap 

(Hartsuiker et al. 2008).  Second, I supplied the target nouns. Third, I tested a form of embedding 

not considered in Branigan et al.’s experiment, namely relative clauses. The reason for adding 

another form of embedding was to test the prediction that different structural contexts (i.e. 
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argument versus adjunct clauses) lead to different patterns of priming behavior.   

 A baseline experiment was run to determine whether the target sentences had any pre-

existing biases. In the baseline experiment, participants received all of the experimental and filler 

fragment sentences (as explained in detail in section 2.1.1). They completed these fragments 

using words listed under the fragments. Responses to the experimental fragments were scored as 

either DO or PD completions according to the scoring conventions discussed in section 3.2 

below. A total of 30 native speakers from the Northwestern University community took part in 

the study for either partial fulfillment of course requirements or pay. The data revealed a slight 

preference for PD completions in embedded clauses in both the VC and RC conditions. Given 

the preferences as presented in Gries 2005, these results were counter to the expectation of a 

slight DO preference. Overall, speakers were more inclined to complete the fragments using PD 

completions, both for the matrix primes (49%) and embedded primes (53%). Table 4.3 contains 

the averages and standard deviations for each cell. 

 Table 4.3: Percent of PD completions for baselines of target items 

Matrix Embedded 

Verb Complement 49% (0.24) 52% (0.26) 

Relative Clause 50% (0.25) 53% (0.22) 

Total 49% 53% 

 

 3.1 Participants   

 A total of 123 native speakers of North American English from the Northwestern 

University community participated for pay or for partial fulfillment of course credit. Participants 

were randomly assigned to one of four groups corresponding to the four versions of the 
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experiment (i.e. the DO-matrix/PD-embedded version of the VC or RC conditions or the PD-

matrix/DO-embedded version of the VC or RC conditions).  Data from 30 participants were used 

for each of these four groups. Data from three participants were excluded for reasons to be 

discussed below. Participants proceeded at their own pace, and the entire experiment took under 

30 minutes on average. 

3.2 Scoring conventions   

 There were three possible scores for a response: DO, PD, or OTHER. For a target 

production to be scored as DO or PD, participants had to read the prime sentence correctly, save 

minor disfluencies for all words but the dative verb. For example, if a speaker misread the 

experimental verb owed as owned, the subsequent target response was marked as OTHER. 

Likewise, in reading the prime, if a participant used the wrong preposition (e.g. with instead of 

to/for) or omitted one of the arguments, the subsequent target production was scored as OTHER. If 

a participant accidentally skipped a prime, the associated target was also scored as OTHER. 

 If the prime was read correctly, the response was scored as either OTHER, DO, or PD 

based on the actual target completion. Given the oral nature of the task, subjects would at times 

correct themselves, either for pronunciation or syntax. Only the final responses were scored. For 

a completion to count as either a PD or DO, the target verb had to be the main verb of the 

embedded or matrix completion, and, if it was a relative clause completion, it had to be a subject-

relative clause. Non-subject relative clauses were excluded to maintain consistency and because 

it was not always clear whether subjects were producing PD or DO completions in object-

relative clauses.  



262 

 

 For a token to count as a DO, the target dative verb had to be followed by two DPs, the 

first of which could be the recipient or benefactor argument of the dative verb, the second being 

the patient argument of the dative verb. For a completion to count as a PD, the target dative verb 

had to be followed by a DP that could be the patient argument of the dative verb followed by 

prepositional phrase headed by either to or for. Depending on the verb, the DP could be the 

recipient or benefactor argument of the dative verb. Using these criteria, the following responses 

would have been scored as an OTHER, DO and PD respectively. 

 (27)   OTHER response 
  The fans all loved the pitcher who [threw the ball at the coach]. 

 

  (28)   DO response  
  The fans all loved the pitcher who [threw the coach the ball]. 

 

 (29)   PD response  
  The fans all loved the pitcher who [threw the ball to the coach]. 

 

The total number of useable responses was 92% of the completions, with OTHER responses 

constituting 8% of the data (stdev = 0.07). This rate of useable responses is slightly higher than 

other rates reported in the literature.
1
  Three speakers had significantly higher rates of OTHER 

responses due to skipping slides or generating non-standard responses, suggesting that they were 

having difficulty with the task. Their data were excluded. 

 3.3 Analysis   

 The data from the two conditions (i.e. the RC and VC) were analyzed first independently 

and then together. Each of these three analyses (i.e. RC, VC, and the full set of data) was 

analyzed using a generalized linear mixed model regression with subjects and items as error 

                                                 
1
 Branigan et al. (2006) used about 90% of their responses, and Bock and Griffin (200) used about 80%. 
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terms.
1
  For ease of presentation, I show the percentages of PD completions. The percentages 

reflect the number of PD completions against the total number of PD and DO completions (i.e. 

PD/(PD+DO)) in a given cell. Each participant had two percentages: one for the number of PD 

completions following PD primes (in either matrix or embedded position depending on the 

participant’s specific condition, e.g. PD-matrix/DO-embedded), and one for the number of PD 

completions following DO primes.  

3.4 Results    

  3.4.1 Relative clause condition 

 Two generalized linear mixed model logistic regression models (i.e. a main effects and an 

interaction model) with contrast coding were applied to the RC data. The contrast coding 

compared (i) the baseline results to the results following PD primes and (ii) the results following 

PD prime to those following DO primes. This manner of coding allows us to see the general 

effect of priming by determining whether DO primes and PD primes differed while also allowing 

us to see a more specific effect of priming, i.e. whether the PD primes differed from the 

baselines.   

A comparison of models found that the interaction did not improve the fit (χ²(2, N = 90) = 

0.07, p = 0.97), so the results from the main effects model are reported here.
 2

  Figure 4.10 

contains the percent of PD completions for the RC baselines as well as for the PD and DO 

primes with their standard error bars. Table 4.4 contains the regression results. 

                                                 
1
 This analysis was used to factor out any potential noise due to participants’ or verbs inherent biases (e.g. some 

participants may prefer to use DOs) and the possibility that a participant’s earlier responses may affect his or her 

later responses (autocorrelation). 
2
 Appendix 4D contains tables from the various models for Experiments 1 and 2. 
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Figure 4.10: Percent of PD completions for RC with baseline by Position*Lag 1 

 

Table 4.4: Regression results RC main effects with baseline at lag of 1 

   Estimate Standard Error z P-value 

Intercept 0.08 0.28 0.27 0.78 

Baseline & PD 0.06 0.17 0.36 0.72 

PD & DO -0.22 0.11 -2.00 0.05* 

Position -0.10 0.37 -0.28 0.78 
  Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

DO primes differed significantly from PD primes (N(90) z = -2.00 p<0.05). However, as Figure 

4.10 suggests, PD primes did not significantly differ from the baseline (z = 0.36 p=0.72). 

Furthermore, there was no effect of position (z = -0.28, p = 0.78). Overall, participants were 

more likely to produce a PD completion following PD primes (54%, stdev = 0.24) than following 

DO primes (46%, stdev = 0.25). When collapsed across the matrix and embedded positions, the 

baseline PD productions (51%, stdev = 0.24) did not differ from the collapsed results for either 
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the PD or DO primes (z = -1.05 p = 0.30).
1
 I return to this result in the discussion. The 

significance trends were independent of position. Specifically, PD primes led to more PD 

completions than DO primes in both matrix contexts (following PD primes 53%, following DO 

primes 45%) and embedded contexts (following PD primes 54%, following DO primes 48%). 

However, there was no difference among the prime times and the baselines in either position. 

 These results indicate that, although the PD primes did not differ from the baselines 

significantly, they did differ from the DO primes, suggesting that the two prime types do lead to 

priming.  

3.4.2 Verb complement clause condition 

The same two generalized linear mixed model logistic regressions (i.e. a main effects and 

a interaction model) with the same contrast coding were applied to the VC data. As with the RC 

data, the interaction model did not improve the fit (χ²(2, N = 90) = 0.15, p = 0.93), so only the 

results from the main effects model are reported here.  Figure 4.11 contains the percent of PD 

completions for the RC baselines as well as for the PD and DO primes with their standard error 

bars. Table 4.5 contains the regression results. 

  

                                                 
1
 Another generalized linear logistic regression was run with treatment coding to determine whether there was a 

main effect of prime when the DO primes were compared directly to the baselines. The results from this analysis are 

included in Appendix 4D. 
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Figure 4.11: Percent of PD completions in VC with baseline by Position*Lag of 1 

 

 

Table 4.5: Regression results VC main effects with baseline at lag of 1 

  Estimate Standard Error z P-value 

Intercept 0.00 0.26 0.00 0.99 

Baseline & PD 0.18 0.17 1.08 0.28 

PD & DO -0.43 0.11 -3.82 0.001*** 

Position -0.20 0.34 -0.57 0.57 
 Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

DO primes differed significantly from PD primes (N(90) z = -3.82 p<0.001). However, as Figure 

4.11 suggests, PD primes did not significantly differ from the baseline (N(90) z = 1.08 p=0.28). 

As in the RC data above, there was no effect of position (z = -0.57, p = 0.57). When collapsed 

over both positions, participants were more likely to produce a PD completion following PD 
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primes (52%, stdev = 0.26) than following a DO prime (39%, stdev =  0.24). When collapsed 

across the matrix and embedded positions, the baseline PD productions (51%, stdev = 0.24) did 

not differ from the collapsed results for the PD, but it did from the DO primes (z = -2.34 p < 

0.05).
1
 Thus, there was a lack of significant differences between PD primes and the baseline but 

a significant difference between PD primes and DO primes and DO primes and the baseline. This 

overall pattern was repeated in both matrix and embedded position. Hence, the trends were 

independent of position. Specifically, PD primes led to more PD completions than DO primes in 

both matrix contexts (following PD primes 48%, following DO primes 37%) and embedded 

contexts (following PD primes 56%, following DO primes 40%). The difference between  

baseline primes and DO primes was significant in both matrix position (t(29) = 2.33, p < 0.05) 

and embedded position (t(29) = 1.77, p < 0.05). However, there was no difference among the PD 

primes and the baselines in either matrix position (t(29) = 0.01, p = 0.57) or embedded (t(29) = 

0.48, p = 0.32). 

3.4.3 Comparing the relative clause (RC) and verb complement clause (VC)  

            conditions at lag of 1 

 

 A generalized linear mixed model logistic regression was also run comparing the RC to 

the VC. These models contained the same contrast coding as the previous, i.e. the PD primes 

were compared to the baselines then separately to the DO primes. Two models were compared, a 

single-interaction model (Position*Condition) and model with all possible interactions. The 

single interaction model allows us to determine whether the two types of embedding led to 

different patterns of priming behavior. The full interaction model allows us to determine whether 

                                                 
1
 As in the RC data above a separate regression with treatment coding compared DO primes directly to the baselines. 

See Appendix 4D for the results.  
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any of the factors interacted to lead to different patterns of behavior. No significant difference 

between the models was found (χ²(6, N = 180) = 2.31, p = 0.89), so the results from the single-

interaction model are presented below. If there were differences in the amount of priming from 

relative clauses or from complement clauses or from the two different matrix positions, we 

would find an effect of condition and/or an interaction.  Table 4.6 contains the regression results 

for the single interaction model. Figure 4.12 contains the percent of PD completions following 

the PD and DO primes by condition and position. The baseline completions for the RC and VC 

conditions are not shown for ease of presentation.
1
 In this graph, the stripped bars represent the 

results from the RC condition, and the solid bars represent those from the VC condition. The 

light-colored bars represent completions following PD primes, and the dark ones represent those 

following DO primes.  

   

  

                                                 
1
 Readers should refer to the RC and VC subsections above to compare the completions following the primes against 

the baselines. 



 

Figure 4.12: Percent of PD completions for RC 

Table 4.6: Regression results from Position*Condition interaction (RC & VC) at lag of 1
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Significance codes:  0 ‘***’
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Estimate Standard Error z 

0.00 0.27 -0.01 

0.12 0.12 1.02 

-0.32 0.08 -4.11 

-0.21 0.35 -0.59 

0.08 0.18 0.44 

0.11 0.17 0.67 
’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

Firstly, there was no significant difference between the PD primes and the baselines (N(180) z = 

1.02, p = 0.31). This is the same pattern as found in both the RC and VC conditions in which 

there was also no significant difference between PD primes and the baselines. However, there 

was a significant difference between PD primes and DO primes (z = -4.11, p <0.001), indicating 

that overall there was a main effect of prime. The regression indicates that there was no effect of 
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and VC by Position*Lag of 1 

 

: Regression results from Position*Condition interaction (RC & VC) at lag of 1 

P-value 

0.99 

0.31 

0.001*** 

0.56 

0.66 

0.51 

Firstly, there was no significant difference between the PD primes and the baselines (N(180) z = 

1.02, p = 0.31). This is the same pattern as found in both the RC and VC conditions in which 

baselines. However, there 
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that overall there was a main effect of prime. The regression indicates that there was no effect of 
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position (z= 0.59, p = 0.56), meaning that being in a matrix or embedded position did not affect 

the overall pattern of priming behavior. At the same time, there was no main effect of condition 

(i.e. RC versus VC) (z = 0.44, p = 0.66). Thus, primes that occur in sentences with relative 

clauses (i.e. those in the RC condition) did not differ significantly from those that occurred with 

adverbial introductory clauses or verb complement clauses (i.e. the VC condition). Furthermore, 

there was no significant interaction among the primes occurring in different positions in the 

different conditions (z = 0.67, p = 0.51). These results indicate that PD completions were more 

frequent following PD primes than following DO primes in all sentence types and from all 

positions, and no position or sentence type differed from the others in this tendency. 

3.5 Discussion  

 These data suggest that structural context does not affect structural priming at short lags 

even in the absence of a strictly ‘lexical boost’ that may have inflated Branigan et al.’s (2006) 

results. Furthermore, these data suggest that priming from different embedded positions may be 

equal. It appears that the best predictor of a completion for these stimuli is the form of the 

preceding prime. PD completions were more likely following PD primes than following DO 

primes regardless of the structural context in which the prime most recently occurred.  

 One interesting trend to note is that the primed responses did not always differ 

significantly from the baseline responses. This is particularly noticeable in the RC condition 

where neither PD nor DO prime completions differed from the baseline though they did differ 

from one another (i.e. PD completions were more likely following PD primes than following DO 
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primes). In the VC condition, the DO primes differed from the baseline, but the PD primes did 

not.  

It is not abundantly clear why DO priming appears to be stronger than PD priming in the 

current experiment. Previous research has also found stronger priming from DO primes (Gries 

2005 and Bock 1996, see Potter & Lombardi 1998 for evidence of the opposite pattern). The 

current pattern may just be in keeping with this general finding. Also, previous research has 

found a slight bias for DO completions overall. It has also found that when a prime goes against 

a verb’s usual bias (e.g. give is highly biased toward DO completions, so a PD prime would go 

against its bias), there is less significant priming (Gries 2005). Given these observations, it could 

be that PDs showed less priming due because in general the verbs I chose tend to occur more 

frequently with DO completions.  

 However, there are a couple other factors specific to the current materials to consider. 

One is the primes. The other is the targets. Both of these factors are experiment-specific in that 

they are sensitive to the materials of the current studies and the relation among agents, 

recipients/beneficiaries, and patients. Changing these relations may moderate the pattern of 

priming. The semantics of the prime sentences or the target sentences may have interacted with 

the priming, creating experiment/material-specific biases. For example, the semantics of a 

priming sentence (e.g. the semantics related with an act of a mother’s promising with her 

daughter involving a ring) may have led to a preference for one alternate over another (e.g. the 

prepositional dative “the mother promised the ring to the girl”). The semantics of a sentence can 

bias toward different completions (Gries & Stefanowitsch 2004), and these biases may have led 



272 

 

to expectation for one completion over the other. If this expectation was violated (e.g. there was 

a bias for expecting a PD completion but the participant received a DO completion), it may have 

led to ‘inverse priming,’ i.e. the tendency for less-frequent or less-expected forms to lead to 

greater priming (Hartsuiker & Westenberg 2000, Pickering & Ferreira 2008, Scheepers 2003, 

Jaeger & Snider 2008). 

 The second source that may have led to greater priming for DO completions could have 

been the targets themselves. Recall that there was slight preference for PD completions for the 

target sentences, as noted by the baseline study discussed in section 3.1. This baseline rate for 

PD completions may have high enough such that it acted as a ceiling. The additional pressure 

exerted by PD primes didn’t affect actual production simply because PD completions where 

already as high as possible.  

 That caveat in mind, the productions following PD and DO primes differed. PD 

completions were more likely following PD primes than DO primes. This tendency was found in 

each condition’s main effects. Priming was not restricted by position or sentence type, meaning 

that being embedded in a matrix or embedded clause or in a relative clause or verb complement 

clause did not adversely affect priming. These data replicate Branigan et al.’s (2006) results and 

suggest that SAP may be correct. At short lags, the memory traces for forms of the dative 

alternation are active enough to prime subsequent behavior, and this priming is independent of—

or at least not noticeably affected by—the larger structural context. These results are in keeping 

with the SAP, which states that structural context should not affect structural priming. However, 

these results do not provide strong evidence against PRICE.  
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As mentioned in section 1.2 above, the model of language processing presented in 

Chapter 2 states that both strength and utility affect the likelihood that a rule (or rule pattern) is 

retrieved. Strength is determined, in part, by recency of use. At short lags, such as the one used 

in this experiment, the rules may still be strong enough to affect subsequent behavior. Utility is 

determined by the estimated probability of success and cost associated with a rule, and this is 

affected by the number of rules associated with the particular rule of interest. I contend that 

utility is a function of structural context (see section 1.2 above) and strength is a function of 

recency.  Given this distinction, it is possible that the effects of structural context (as measured 

by utility) cannot arise until after a longer delay when the effects of recency on a rule’s strength 

have waned. If this prediction is correct, then differences in priming behavior should arise at 

longer lags. 

 If SAP is correct and structural context does not affect priming, then primes in all 

structural contexts should continue to show the same pattern of priming behavior over time. 

However, if structural context (in particular, the way different structural contexts are processed) 

affects the way forms are represented in and retrieved from memory, priming behavior should 

vary among the structural contexts over time, as claimed by PRICE.  

 

4. Experiment 2: The long-term effects of structural context on structural priming  

Previous research on structural priming has found stable long-term effects for structural priming 

lasting up to ten filler items after the prime (Bock & Griffin 2000). However, there is usually a 

slight decline following one filler item and then perhaps a slight increase (Bock & Griffin 2000, 
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Hartsuiker et al. 2008, Ferreira et al. 2008). SAP predicts that if there is any long-term effect of 

structural priming, it should affect all primes similarly, regardless of the structural context in 

which the prime occurred. PRICE claims that there may be differences.   

Experiment 2 explores the possibility that different priming effects arise from various 

structural contexts after longer intervals (or ‘lags’) between the prime and target. As mentioned 

above, SAP predicts that there should be no variation among the different structural contexts. All 

primes should demonstrate the same pattern of behavior.  

 4.1 Changes to the materials and methods        

 To manipulate the lag in Experiment 2, I redistributed the filler items that occurred within 

a given block.  Recall that in Experiment 1 there were four total filler items per block and one 

prime-target pair. In Experiment 1, one filler item occurred between the prime-target pair, and 

three other fillers occurred elsewhere in the block. In Experiment 2, I moved two of the other 

filler items to occur between the prime and target. However, I kept the filler-target pair that 

occurred in Experiment 1 the same in Experiment 2, as shown in Table 4.7. 

 Table 4.7: Block design for Experiment 1 and 2 

Experiment One Experiment Two 

Filler 1 

Filler 2 

Prime 

Filler 3 

Target 

Filler 4 

Prime 

Filler 1 

Filler 2 

Filler 3 

Target 

Filler 4 

 

 4.2 Participants   

 One-hundred and twenty-two native speakers of North American English from the 
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Northwestern University community participated for pay or partial course credit. None of the 

participants who took part in Experiment 1 took part in Experiment 2. Two participants exhibited 

difficulty with the task, and their data were excluded from the final analysis.  

  4.3 Scoring and analysis 

 The scoring conventions were the same as in Experiment 1.  Similar to Experiment 1, 

OTHER responses accounted for 8% of responses (stdev = .08). All the data were analyzed using a 

generalized linear mixed model regression with subjects and items as error terms.  

 4.4 Results   

 Below, I first consider the results from the RC condition and then compare the results for 

this condition to the results for the RC condition at the short lag (Experiment 1). This is followed 

by the same analyses for the VC condition, starting with the results from the current experiment 

and then a comparison between the VC conditions in short lag (Experiment 1) and the long lag 

(Experiment 2). After these analyses, I compare the results from the RC and VC conditions of 

the current experiment (lag 3), and then I compare the results for Experiments 1 and 2 combined.  

  4.4.1   Relative clause condition  

As in Experiment 1, I used generalized linear mixed model logistic regression models (i.e. a 

main effects and an interaction model) with contrast coding to analyze the data. Two models 

were compared: a main effects and an interaction model. The interaction did not improve the fit 

(χ²(2, N = 90) = 0.14, p < 0.93) , so the results from the main effects model are reported below. 

Figure 4.13 contains the percent of PD completions for baseline productions PD and DO prime 

completions. Table 4.8 contains the results from the regression. 
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Figure 4.13: Percent of PD completions in RC with baseline by position at lag of 3 

 

   

Table 4.8: Regression results RC with baseline for main effects at lag of 3 

 Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

As in Experiment 1, there was a significant difference between PD and DO primes (N(90) z = -

4.47, p < 0.001) but no significant difference between PD primes and the baseline (z = 1.63, p = 

0.10). There was also no effect of position (z = -0.37, p = 0.72) for the RC data. Overall, 

speakers were more likely to produce a PD completion following a PD prime (51%, stdev = 

0.24) than a DO prime (37%, stdev = 0.27).  PD primes led to more PD completions in both 
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matrix (48% following PD prime, 35% following DO prime) and embedded (53% following PD 

prime, 38% following DO prime) positions. These differences, i.e. between PD and DO primes, 

were significant both for matrix primes (t(29) = 1.92, p < 0.05) and for embedded primes (t(29) = 

2.09, p < 0.05).  

Recall that in Experiment 1, I did not find a significant difference between the baseline 

and the PD primes. The data from Experiment 1 seem to indicate that, DO primes led to more 

significant priming and that PD primes may have been at ceiling. This pattern of results repeats 

itself in the current RC data for Experiment 2. Post-hoc t-tests revealed that the DO primes 

differed from the baseline in both matrix position (t(29) = 2.25, p < 0.05) and embedded position 

(t(29) = 2.14, p < 0.05). However, the PD primes did not differ significantly from the baseline in 

either matrix position (t(29) = 0.41, p = 0.66) or embedded (t(29) = 0.23, p = 0.41).  

 Comparing lag 1 and 3 for RC: A main effects and two interaction models ( a 

position*lag model and a prime*position*lag) model were tested. Neither the model with a 

single interaction (χ²(2, N = 120) = 0.11, p < 0.74) nor the model with all the interactions (χ²(4, N 

= 120) = 3.10, p = 0.54) fit the data better, so the results from the main effects model are presented.  

Figure 4.13 presents the data from Experiment 1 and 3 for the RC condition. In the figure below, 

the priming results from the Experiment 1 (lag of 1) are depicted on the left, and the results from 

Experiment 2 (lag of 3) are on the right. The difference between the gray lines (PD) and the 

black lines (DO) marks the main effects of priming, and the closeness of the solid lines (matrix 

position) and the dotted lines (embedded positions) depicts the effect of position or, technically, 

the lack of an effect. Table 4.9 contains the results from the main effects regression. 
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Figure 4.14: Percent of PD completions for RC by lag and position 

 

Table 4.9: Regression results RC at lag 1 and 3 main effects 

 Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

There was a main effect of prime (N(120) z = 5.38, p  < 0.001). PD completions were common 

following PD primes than DO primes. However, there was no effect of position (z = -0.38, p = 

0.70) or lag (z = -1.56, p = 0.12). Figure 4.23 below depicts the percentage of PD completions 

for each position at short lag of one filler item between the prime and target (Experiment 1) and 

the long lag of three (Experiment 2) for the RC condition.  

The slope between the DO points on the left and those on the right in Figure 4.13 

suggests an increase in priming for DO primes from lag 1 to lag 3. That is, there are fewer PD 

completions following DO primes at lag of 3 than there were at lag of 1. Subsequent post hoc 
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analysis found that, although there was no main effect of lag, there was an effect of lag for DO 

primes (t(59) = 2.31, p < 0.05) but not for PD primes (t(59) = 0.65 , p =  0.52). When we 

consider all of the DO primes at lag1 and at lag 3, we find a difference. However, this effect did 

not arise when each position was analyzed by itself. I return to this effect in section 5 below.  

 4.4.2 Verb complement clause condition  

 A comparison of a main effects model and an interaction model found that the interaction 

model better fit the data (χ²(2, N = 90) = 6.02, p < 0.05, difference in log likelihood = 3.01).  The 

results from this interaction model are presented below. Figure *** contains the percent of PD 

completions for the VC baselines and the PD and DO primes. Table 4.10 contains the results 

from the interaction regression. 

Figure 4.15: Percent of PD completions in VC with baseline by position at lag of 3 
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Table 4.10: Regression results VC at lag of 3 

  Estimate Standard Error z P-value 

Intercept 0.25 0.27 0.94 0.35 

Baseline & PD -0.08 0.17 -0.47 0.64 

PD & DO 0.22 0.17 1.30 0.19 

Position -0.36 0.36 -1.00 0.32 

Baseline & 

PD*Position 0.14 0.17 0.81 0.42 

PD & DO*Position -0.68 0.27 -2.51 0.01* 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

This model found no difference between the baselines and completions following PD primes 

(N(90), z = -0.47, p = 0.64) or between completions following PD primes and those following 

DO primes (z = 1.30, p = 0.19). Overall, speakers were equally as likely to produce a PD 

completion following a PD prime (53%, stdev = 0.22) as they were following a DO prime (46%, 

stdev = 0.26). The model did not find a main effect of position either (z = -1.00, p = 0.32). 

However, it did find a significant interaction between PD and DO primes and position (z = -2.51, 

p < 0.05). The lack of a priming effect and the significant interaction between prime and position 

appears to be driven by the position of the prime in an embedded clause in the VC condition.  

Primes in a matrix clause demonstrate the pattern of priming that we would expect. For matrix 

positions, PD completions were more likely following PD primes (54%) than following DO 

primes (37%), and this difference was significant (t(29) = 2.67, p<0.05). However, primes in an 

embedded clause seem to show no effect. PD completions were just as likely following a PD 

prime (52%) as they were following a DO prime (56%) (t(29) = 0.55, p = 0.59). Furthermore, 

there was a significant difference between matrix DO primes and embedded DO primes (t(29) = 

2.30, P < 0.05) but no difference between  embedded DO primes and embedded PD primes (t(29) 
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= 0.66, p = 0.75) or matrix PD primes (t(29) = 0.55, p = 0.71).These data suggest that where the 

prime occurred (i.e. its larger structural context) affected the efficacy of the prime. Specifically, 

primes in verb complement clauses did not affect subsequent behavior at long lags, but those in 

matrix clauses did.  

 Comparing lag 1 and lag 3 for the VC condition: Three regressions were run to compare 

the results from the VC condition at lag of 1 (Experiment 1) and lag of 3 (Experiment 2): (i) a 

model for main effects only, (ii) a model with an interaction between position and lag, and (iii) a 

model for all possible interactions (prime*position*lag).  A comparison of models found no 

significant difference between the main effects model and the single interaction model (χ²(1, N = 

120) = 1.21 p = 0.27). However, there was a significant difference between the main effects model 

and the model with all possible interactions (χ²(4, N = 120) = 11.33, p = 0.02, difference in log odds = 

5.6). The results from this more complex model are presented in Table 4.11 below. 

Table 4.11: Regression results VC Position*Prime*Lag at lag 1 and 3 
 Estimate Standard Error z p-value 

Intercept -1.04 0.40 -2.58 0.01** 

PD Prime 1.44 0.47 3.08 0.01** 

Position 0.45 0.58 -0.79 0.43 

Lag 0.51 0.14 3.42 0.001*** 

Prime*Position -1.04 0.82 -1.27 0.21 

Prime* Lag -0.60 0.21 -2.86 0.01** 

Position*Lag -0.50 0.21 -2.33 0.02* 

Prime*Position*Lag 0.75 0.37 2.05 0.04 

 

The regression found a significant effect of priming overall (N(120) z = 3.08, p < 0.01). PD 

completions were more likely to follow PD (52%) primes than following DO primes (42%). The 

regression model suggests that position was not significant (z = -0.79, p = 0.43). However, lag 

was significant (z = 3.42, p < 0.001). In addition, there were significant interactions between 



282 

 

prime and lag (z = -2.86, p < 0.01) and position and lag (z = 2.05, p < 0.05). The directions of 

these interactions become more apparent when we consider Figure 4.16. 

 Figure 4.16: Percent of PD completions for VC by Prime*Position*Lag 

 

The black solid line (DO embedded position) in Figure 4.16 crosses over the PD solid and dotted 

lines (PD in embedded and matrix positions) at lag 3. This crossover denotes the lack of priming 

from DO primes in verb complement clauses. Recall that neither the PD nor the DO primes in 

embedded positions at lag of 3 differed from the baseline nor did they differ from one another.  

This suggests that there was no priming from embedded positions at a lag of 3. 

To explore this possibility more closely, I ran another regression considering only the DO 

primes. In previous analyses, the DO primes were the only ones that led to significant differences 

from the baseline. Earlier, I argued that PD primes may not demonstrate priming because PD 

completions are already at ceiling and, thus, only DO primes demonstrate priming behavior. By 

considering only the DO primes, we can more closely attend to possible interactions between 

position and lag. I used another generalized linear mixed model logistic regression with an 
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interaction between position and lag. Table 4.12 contains the results from this regression. 

 

Table 4.12 Regression results for DO primes only for Position*Lag at lag 1 and 3 

 

  Estimate Standard Error z P-value 

Intercept -0.96 0.41 -2.32 0.02* 

Position 0.35 0.58 0.60 0.55 

Lag 0.47 0.16 2.89 0.01** 

Position*Lag -0.46 0.23 -2.00 0.05* 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

Here we see that there is a significant effect of lag (N(120) z = 2.89, p < 0.01). There were more 

PD completions following DO primes at lag 3 (47%) than at lag 1 (37%). Also, there is a 

significant interaction between position and lag. For matrix DO primes, the number of DO 

completions remained about the same for matrix primes across the lags (35% at lag 1, 37% at lag 

3), but the number of DO completions following DO primes at lag 3 was significantly lower than 

at lag 1 (38% at lag 1 56% at lag 3). The fact that there is a significant effect of lag and an 

interaction between lag and position for DO primes suggests that lag is relevant. I return to this 

discussion in section 5 below.  

  4.4.3 Combined results from both conditions in Experiments 1 and 2   

 Two final series of analyses were run. The first compared the results of the RC and VC 

conditions of Experiment 2 (lag of 3), and the second compared the compiled results for all 

conditions from each experiment. These analyses are presented in turn. 

 RC and VC at lag of 3: A generalized linear mixed model logistic regression was run to 

compare the RC to the VC. Two models were compared, a single-interaction model 

(Position*Condition) and a model with all possible interactions. There was no significant 
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difference between them (χ²(3, N = 120) = 6.58, p = 0.09), so the results from the single-interaction 

model are presented below. 

 Figure 4.17 contains the percent of PD completions following PD and DO primes in 

matrix and embedded positions, and Table 4.13 contains the results from the regression.
1
 The 

striped bars denote results from the RC condition, and the solid bars denote results from the VC 

condition. The light bars denote completions following PD primes, and the dark bars denote 

completions following DO primes. 

 Figure 4.17: Percent of PD completions for RC and VC by Position*Lag of 3 

 

Table 4.13: Regression results from Position*Condition for RC and VC at lag of 3 

  Estimate Standard Error z P-value 

Intercept 0.26 0.28 0.94 0.35 

Baseline & PD 0.13 0.12 1.14 0.25 

PD & DO -0.32 0.08 -3.97 0.001*** 

Position -0.35 0.36 -0.97 0.33 

Condition -0.38 0.19 -2.05 0.04* 

Position*Condition 0.21 0.17 1.20 0.23 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

                                                 
1
 The baseline productions for the RC and the VC conditions are not shown for simplicity’s sake. 
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This regression found no significant difference between completions following PD primes across 

the two conditions and the baselines for the RC and VC sentences. However, there was a 

significant difference between the PD and DO primes (N(180) z = -3.97, p < 0.001). There was 

also a main effect of condition (z = -2.05, p < 0.05), suggesting that the structural contexts may 

indeed be significantly different. The data indicate that there were more PD completions in the 

VC condition (50%, stdev =  0.24) than in the RC condition (44%, stdev = 0.25). This effect is 

probably driven by the high percent of PD completions in the VC condition. 

 As Figure 4.30 suggests, the embedded forms in the two conditions differ. Although the 

interaction did not reach significance, post hoc analysis that compared only the DO primes to DO 

primes and PD primes to PD primes found that position mattered for DO primes. Depending on 

the position of the DO prime different patterns of priming behavior surfaced. The difference 

between the two conditions in embedded positions is significant for DO primes (t(29) = 2.93, p = 

0.01) but not PD primes (t(29) = -0.17, p = 0.87). However, the difference between them in the 

matrix position is not significant for either prime type (PD prime t(29) = 1.08, df = 29, p-value = 

0.29; DO prime t(29) = 0.68, p = 0.50). 

 RC and VC at lag of 1 and lag of 3:  The final regression compared all the data from 

Experiment 1 and 2. Both the VC and RC conditions at the short lag and the long lag were 

combined to see if there are any general trends that arise when the phenomena is considered in 

its entirety. A comparison of models found that the best-fitting models allowed for an interaction 

between Condition (RC or VC) and Lag (1 or 3). The difference between the main effects model 

and the model with only one interaction (i.e. Condition*Lag) was significant (χ²(1, N = 240) = 
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3.92, p < 0.05; difference in log likelihood = 2.00). Additional interactions did not improve the 

fit of the models, so the results from the single interaction Condition*Lag are reported in Table 

4.14.  

Table 4.14: Regression results for RC and VC conditions at lag of 1 and 3 

  Estimate Standard Error z P-value 

Intercept -0.48 0.34 -1.44 0.15 

Prime 0.54 0.08 7.19 0.00 

Position -0.21 0.35 -0.60 0.55 

Condition 0.50 0.33 1.53 0.13 

Lag 0.12 0.10 1.14 0.25 

Condition*Lag -0.29 0.15 -2.00 0.05 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

This regression found a main effect of prime (N(240) z = 7.19, p < 0.00). Overall, there were 

more PD completions following PD primes (52%) than following DO primes (42%). However, 

there was also a significant interaction between the condition (RC and VC) and lag (1 and 3 

items) (z = -2.00, p < 0.05). This interaction suggests that the structural context in which a prime 

occurs interacts with priming behavior but only as a function of time. As was mentioned earlier, 

DO primes in the RC condition showed an effect of lag, in which all DO primes primed more at 

longer lags. This increase in priming occurred regardless of the prime’s position (i.e. in a relative 

clause or in a sentence with a relative clause). Lag-based differences were also found for primes 

in verb complement clauses. However, instead of improving priming (as in the RC condition), 

the lag undermined priming behavior, leading to an absence of priming at longer lags for primes 

in verb complement clauses.   

4.5 Discussion  

 The above results suggest that structural priming isn’t as context insensitive as previously 
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assumed. In particular, primes that occur in verb complement clauses do not demonstrate the 

same pattern of behavior as those occurring in different structural configurations. After a long 

lag, priming from this position disappeared, though priming from the other positions persisted. 

SAP claims that all of the primes should have demonstrated similar patterns of priming. If 

priming disappears from one position, it should disappear from all. If it persists in one, it can 

persist in all. PRICE contends that primes occurring in different structural contexts should 

demonstrate different patterns of priming behavior. The above results offer support for the 

PRICE account of priming. PRICE claims that structural context affects priming behavior by 

affecting the estimates of a rule’s utility (section 1.2). However, this effect is not apparent in the 

short-term (e.g. lag of 1) due to the boost in strength received from recent activation.  We now 

turn to how the model of language processing presented in Chapter 2 accounts for the results 

from Experiment 1 and 2. 

 

5. General Discussion 

These two experiments indicate that structural priming is affected by the location of the prime 

within the larger structural context of its containing sentence. It is not the case that encountering 

a prime in one structural context is equivalent to encountering it in a different structural context. 

The story is more complex than that. The above results suggest that we need a more nuanced 

view of structural priming.  

Contra to Branigan et al.’s (2006) findings for structural priming, my results indicate that 

participants are sensitive to the structural context in which structural primes occur. Branigan et 
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al. found that speakers were just as likely to reuse structural alternates (e.g. DO completions) 

when the alternate occurred in matrix position or embedded in verb complement clauses. My 

results indicate that this reuse is sensitive to the amount of time between the prime and the target. 

As time increases (e.g. from no items between the prime and target to three items), the influence 

of the prime disappears when the prime is embedded in a verb complement clause. Thus, my 

results indicate that the processing of the prime and its larger structural context interact. 

This supports the general claim made by Scheepers (2003) and Desmet and Declercq 

(2006) that the processor tracks broader syntactic constructions and is sensitive to differences in 

‘global structure.’
1
 However, my results demonstrate a different form of sensitivity than the one 

explored by Scheepers (2003) and Desmet and Declercq (2006). In their studies, they found that 

participants were primed by the attachment levels of relative clauses. If the prime sentence had a 

low-attaching relative clause, the participant was more likely to produce a low-attaching relative 

clause than if the prime sentence had a high-attaching relative clause (see section 1.2 for 

discussion). These findings suggest that the processor tracks the relation among structural units 

and that subsequent processing of a similar form is facilitated by exposure to a particular 

relation. My results indicate that the processor is also inhibited by structural contexts and 

configurations. Reusing particular structural patterns (e.g. DOs) is less likely over time when the 

structural pattern is associated with structural contexts such as verb complement clauses. 

Combined Scheepers’s, Desmet and Declercq’s, and my findings all indicate that the processor is 

sensitive to the entire structural context of a prime sentence and that the processing of all the 

                                                 
1
 Branigan et al. (2006) use the term ‘global structure’ to refer to the larger syntactic context in which a prime occurs 

and the ordering of various phrases and clauses associated with a prime sentence. 
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forms associated with the prime sentence interact to facilitate some aspects of processing (e.g. 

the attachment levels of modificational material) but not others (e.g. the reuse of DO or PD 

forms). In what follows, I clarify how why this interaction occurs. 

 To begin our discussion, I first review structural priming and its place within the 

language processing model presented in Chapter 2. I then revisit the processing differences 

predicted by the model, namely the processing of argument and adjunct clauses. This is followed 

by a demonstration of how processing affects representations in memory and how this, in turn, 

affects structural priming behavior. 

5.1 Structural priming revisited 

 In standard accounts, structural priming is explained as a result of node activation (e.g. 

Pickering & Branigan 1998; Reitter 2008) or as a result of implicit long-term learning (e.g. Bock 

1986b, Bock & Kroch 1989, and Ferreira & Bock 2006). In both of these approaches, having 

processed a structural prime, such as a prepositional dative (as in “gave the book to Sandy”), 

increases the likelihood of reusing or responding more quickly to another instance of same 

linguistic form as the prime. However, the reason for this tendency differs.  

The Pickering and Branigan (1998) approach treats combinatorial information in the 

same way as they treat lexical or semantic information. This type of approach focuses more fully 

on the short-term effects of processing. The implicit learning approach is similar in that it 

assumes that processing affects the activation weight of a form, but it treats this processing as 

more substantial than simple transitory, lexical-like priming. Structural priming affects the long-

term representations and base-level activation weight of a prime. Kaschak (2007) contends that 
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these two approaches can account for some of the same data, although the implicit-learning 

account may be more tenable than the Pickering and Branigan (1998) account as currently stated. 

Kaschak proposes that there is a long-term effect of processing that affects the overall base rate 

of a form’s use by adjusting, or ‘tuning’, the weights associated with the form. There is also a 

separate contribution of the most recent tuning event in that the most recent event that biases the 

processor toward one completion over the other. This bias may reflect the short-term effects of 

priming. I return to this distinction in Chapter 5. 

 As discussed in section 1.2, I contend that structural priming is best understood as 

priming for procedural knowledge (structure building). Procedural knowledge is represented by a 

set of production rules. Structural priming is the reuse of recently-used production rules. For 

example, to decide which pattern (double object or prepositional dative) to use following a dative 

verb, the processor compares the strength and utility of different production rules (see also 

Chapter 2, section 3.3.2). 

A production rule’s strength is similar to a declarative chunk’s activation weight, in that 

it is sensitive to the number and recency of retrievals. Each time a rule is deployed, its strength 

increases, regardless of whether it led to the successful completion of the goal. Thus, rule 

strength gives rise to potential recency effects. Rules used more recently have an additional boost 

to their strengths that—like the activation weight boost for chunks—wanes over time.  

A production rule’s utility is sensitive to both (i) the probability that the rule successfully 

achieves its effects and leads to the completion of the goal and (ii) the cost associated with firing 

the rule and all subsequent rules necessary for the completion of the goal (Chapter 2, section 
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3.3.2 and section 1.2 above).  

To determine a rule’s utility, the processor must access previous instances of the rule’s 

use. Upon retrieving an instance, the processor evaluates the rule’s success (e.g. if the rule 

successfully completed its particular goal and if the rule led to the successful completion of the 

larger goal) and the cost associated with applying the rule. The more processing involved in a 

particular instance of the rule’s use, the more costly the rule is assumed to be. Thus, to determine 

whether a particular application of a production rule is likely to raise or lower the utility of a 

rule, we must consider the amount of processing involved during the processing of the prime’s 

containing sentence, in particular the structural context in which the prime occurs. Processing 

here refers to the number of chunks, rules, and unification cycles (Chapter 2, section 3.4.1) 

necessary for the processing of the prime’s structural context. The structural context is associated 

with a unification chain generated during processing, i.e. the series of unification cycles used to 

resolve a single goal (Chapter 2, section 3.4.3). For example, during the processing of a 

sentence’s subject DP, the processor must retrieve a DP-chunk and an NP-chunk, pop them, and 

unify them. The unification of the NP-chunk unifies with the open =NP value of the DP-chunk 

counts as a unification cycle. The unification of the resulting DP-chunk with the open =DP value 

of the S-chunk counts as another unification cycle. Because these two were part of the same 

subgoal structure, they are part of the same unification chain (see Chapter 2, section 3.3.1 and 

section 3.4 for depictions of the formation of unification chains). 

In the model of language processing presented in Chapter 2, when the processor retrieves 

sentences from memory, it retrieves the unification chain(s) associated with the production of the 
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sentence. As the processor evaluates a rule’s utility, it considers only the number of rules 

involved in the formation of the unification chain associated with the rule of interest. Thus, 

features of the chain, such as length, affect the utility score the processor gives particular rules 

associated with the chain.  

Because structural priming is based on the reuse of production rules, both strength and 

utility must be considered. Strength is affected by activation and decay. Utility is affected by the 

cost of applying a rule and the probability of the rule’s success. When there are more rules 

necessary for the completion of a subgoal structure, the cost of applying a rule increases and the 

likelihood of success decreases. Unification chains reflect subgoal structures, and these subgoal 

structures reflect differences in structural contexts. When the unification chain is longer due to 

larger subgoal structures, the individual rules associated with the chain have lower utility scores. 

Differences in the strength or utility of a rule can lead to differences in priming. In 

Experiments 1 and 2 reported in this chapter, I controlled for recency and varied structural 

context. I found an effect of structural context. Before we can interpret these results, we must 

understand how the structural contexts differ and how these differences affect the memory traces 

for primes. 

5.2 Determining structural contexts and setting predictions  

 The primary way in which the prime sentences’ structural contexts differ is in the 

length of the unification chains that they are associated with. Of particular interest to us are the 

differences between processing primes that appear in adjunct clauses and primes that appear in 

argument clauses. In Chapter 2, section 3.4.3, I presented a model of processing in which 
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arguments and adjuncts were processed differently. Specifically, arguments associated with the 

same unification chain as their selectors whereas adjuncts associated with separate unification 

chains.  Recall that there are three types of production rules (Chapter 2, section 3.3.1): 

(i) RETRIEVAL RULES find chunks in long-term memory and place them into the retrieval 

buffer 

 

(ii) PUSH RULES change the problem state by adding new subgoals   

 

(iii) POP RULES remove chunks from the retrieval buffer or subgoals from the problem state  

 

These rules fire based on the state of the buffers. Rule firing is also affected by the 

accessibility of the rules, as reflected by rule strength and utility. Different patterns of retrieve, 

push, and pop rules are associated with the processing of different structural contexts. After a 

‘pop’ rule fires, a chunk that was being held in the retrieval buffer becomes available for 

unification with the chunk associated with the problem state buffer (i.e. the chunk associate with 

the next subgoal) (see Chapter 2, section 3.2 for a description of the buffers).  When the popped 

chunk’s type (e.g. NP) satisfies an open value in the chunk associated with the next subgoal (e.g. 

the open =NP value of a DP-chunk), the popped chunk and the open value in the subgoal’s chunk 

unify. The product of their unification then pops from the retrieval buffer and becomes available 

for unification with the next subgoal’s chunk (see Chapter 2, section 3.4 and Chapter 3, section 

5.2 for a more detailed discussion of this process). As long as the product of unification satisfies 

an open value in the next subgoal’s chunk, the unification cycles continue to add links to the 

unification chain. As soon as there are no open values in the problem state buffer that a popped 

chunk can satisfy, the chain ends and is sent to long-term memory (LTM).  
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The significance of this is that adjunct clauses form distinct chains, whereas argument 

clauses are part of the same chain as their selectors. The reason that adjuncts are distinct is that 

when an adjunct is fully processed and popped from the retrieval buffer, its values are not 

required by the next subgoal’s chunk. Consider again the chunks presented in Chapter 2, section 

3.3.1. 

 

Chunk 1 

  

Chunk 2 

  

Chunk 3 
isa    : DP 

case  : nom 

num  : sg 

orth  : the 

comp : =NP 

 

 isa    : NP 

case  : nom 

num  : sg 

orth  : duke 

 isa    : NP 

case  : acc 

num  : pl 

orth  : rubies 

Chunk 4  Chunk 5  Chunk 6 

isa   : S 

num  : pl 

spec  : =DP 

comp : =VP 

tense  : past/pres 

finite : finite 

 

 isa : AdjP 

orth  : nice 

mod : =NP 

    isa : RelC  

 num  : sg 

   spec: =RelP  

comp : =S-gap 

 mod : =NP 

 
 

 

Note the open values (i.e. anything with the form =XP). Chunk 6 (i.e. the RelC-chunk) requires 

an NP to satisfy its ‘mod : =NP.’ Similarly, Chunk 1 (i.e. the DP-chunk) requires an NP to 

satisfy its ‘comp : =NP.’ However, nothing has an open =RelC chunk, whereas the S-chunk 

requires a DP-chunk. Because nothing requires a RelC, it cannot be unified with any particular 

chunk. On the other hand, because a DP-chunk is required by other chunks’ open values (e.g. the 

open =DP value of the S-chunk), the DP-chunk can be unified with other chunks after its open 

values are resolved. In contrast, once the processing of a relative clause is complete, the 

unification chain associated with the relative clause ends and is sent to LTM. However, the 

unification chain associated with the processing of a verb complement clause such as the 
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underlined clause in “The king knew that the duke promised the duchess the rubies” is part of the 

unification chain associated with the verb complement clause’s containing sentence. Recall that 

PRICE contends that long unification chains lead to weaker priming than short unification 

chains. If this I correct, then there should typically be weaker priming from primes associated 

with sentences with argument clauses (e.g. those with verb complement clauses) than those 

contained in sentences with adjunct clauses (e.g. relative clauses). 

5.3 The effects of processing structural contexts on structural priming 

The model of language processing presented in Chapter 2 states that a rule’s retrieval is 

sensitive to its strength and its utility (Chapter 2, section 3.3.2). The ‘structural context’ of a 

prime is taken here to be reflected by the unification chain that the prime is associated with. The 

length of these chains is determined by the differences in the subgoal patterns associated with the 

processing of different sentences. These differences map onto differences such as the 

argument/adjunct distinction.  When the processor estimates strength, it retrieves the unification 

chains and their associated production rules and determines the amount of decay between the 

creation of the chain and the current processing event. To determine the utility of a rule, the 

processor retrieves the unification chains associated with the rule and determines the cost and 

probability of success for the particular rule given the number of other rules also associated with 

the unification chain.   

The size and number of elements in the unification chains are relevant. The model of 

language processing presented in Chapter 2 predicts that primes that are associated with longer 

unification chains exert less influence over subsequent behavior than those in shorter chains. 
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Consequently, structural primes in configurations such as verb complement clauses are expected 

to not exert as much influence as primes in configurations such as the primes in relative clauses 

or matrix clauses. The reason is that the unification chains associated with sentences containing 

argument clauses, e.g. verb complement clauses, are typically longer than those generated by 

sentences containing matrix clauses or adjunct clauses.  

 To demonstrate the role of unification chains in explaining the sensitivity of structural 

priming to syntactic context, let us start with how a chain for a matrix clause containing a double 

object prime (underlined) develops.  

(29) Prime in matrix clause 

The duke promised the duchess the rubies. 

 

Multiple chunks must be retrieved, pushed, and popped in order to process this sentence. Each of 

these actions is associated with a rule. These rules form a pattern that is ultimately represented in 

memory along with the specific chunks used during the sentence’s processing.  

In the demonstrations below, as in the demonstrations in Chapter 3, section 5.2, I adopt 

the following notational conventions. In this and all subsequent demonstrations, the processing 

goals are shown in a box, whereas all the retrieved chunks appear in brackets. Solid arrows (�) 

denote the application of a production rules that retrieves a chunk, terminal buttons ( ) denote the 

application of a production rules that pops chunks, and dashed arrows ( ) represent unification 

operations. The diagram below shows the steps used to retrieve an S-chunk, then a DP-chunk 

(�), then an NP-chunk (�), followed by the popping ( ) of the NP, and its unification with the 

open =NP value of the DP-chunk ( ).  

  



 

 

The right-hand column keeps track of all 

shown in bold italics. Rules are in normal font.  The

numbered strictly for the purpose of explaining the processing of the different sentences that we 

consider in this section. For example, the NP 

contained in the first DP unified with the VP is NP

sentence type considered in Experiments 1 and 2, I present a table

for the unification chains generated during a sentence

reflects the number of chains associated with

retrieve S

push S

retrieve DP

push DP

retrieve NP

pop NP

 unify NP with =NP of the DP

 

 For the sentence in (29) above (i.e. 

processor begins with a goal, i.e. 

 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

 unify NP with =NP of the DP

hand column keeps track of all the rules used thus far. Unification operations are 

shown in bold italics. Rules are in normal font.  The syntactic constituents (NP, VP, etc.) are

the purpose of explaining the processing of the different sentences that we 

. For example, the NP contained in the subject DP is NP1,

first DP unified with the VP is NP2. After I step through the processing of each 

sentence type considered in Experiments 1 and 2, I present a table with all the production rules 

for the unification chains generated during a sentence’s processing. The number of columns 

associated with a sentence.  

Retrieved rules 

retrieve S-chunk 

push S-chunk 

retrieve DP-chunk 

push DP-chunk 

retrieve NP-chunk 

pop NP-chunk 

unify NP with =NP of the DP 

For the sentence in (29) above (i.e. “The duke promised the duchess the rubies

processor begins with a goal, i.e. ‘process sentence,’ which stays in the control buffer until the 
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unify NP with =NP of the DP 

the rules used thus far. Unification operations are 

syntactic constituents (NP, VP, etc.) are 

the purpose of explaining the processing of the different sentences that we 

1, and the NP 

After I step through the processing of each 

the production rules 

s processing. The number of columns 

The duke promised the duchess the rubies”), the 

which stays in the control buffer until the 



 

sentence is fully processed: 

 

The processor notes this goal, checks the buffers, finds them to be empty, and selects a 

S-chunk’ rule:  

 

 

The S-chunk has two open values: =DP and =VP. Because there are open values, the processor 

determines that the chunk is incomplete, so it selects 

the DP-chunk from the retrieval buffer into the problem state buffer

 

 

 

The processor notes the state of the buffers. The problem state has a chunk with two open values 

(i.e. =DP and =VP), which generate two subgoals (

currently any chunk in the retrieval buffer, so the processor selects a rule that should ultimately 

The processor notes this goal, checks the buffers, finds them to be empty, and selects a 

retrieve S-chunk 

chunk has two open values: =DP and =VP. Because there are open values, the processor 

determines that the chunk is incomplete, so it selects the rule ‘push S-chunk’ rule, which moves 

chunk from the retrieval buffer into the problem state buffer (Chapter 2, section 3.3.1). 

retrieve S-chunk 

push S-chunk 

The processor notes the state of the buffers. The problem state has a chunk with two open values 

(i.e. =DP and =VP), which generate two subgoals (‘process DP’ and ‘process VP

currently any chunk in the retrieval buffer, so the processor selects a rule that should ultimately 
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The processor notes this goal, checks the buffers, finds them to be empty, and selects a ‘retrieve 

chunk has two open values: =DP and =VP. Because there are open values, the processor 

rule, which moves 

Chapter 2, section 3.3.1).  

The processor notes the state of the buffers. The problem state has a chunk with two open values 

process VP’). There is not 

currently any chunk in the retrieval buffer, so the processor selects a rule that should ultimately 



 

lead to the successful completion of one of the two subgoals. In this case, it selects a 

DP’ rule.   

 

Note that the ‘retrieve DP’ rule in the right

‘retrieve DP’ rule was selected in an attempt to resolve an aspect of the chunk in the problem 

state buffer. In this case, the ‘retrieve DP

However, before it the DP-chunk can unify with the open =DP value of the S

processor must verify that the DP

The DP-chunk, like the S

chunk into the problem state buffer.

 

The processor again checks the contents of the buffers, notes the open =NP in

DP-chunk (i.e. the new subgoal to 

lead to the successful completion of one of the two subgoals. In this case, it selects a 

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

   
     

rule in the right-hand column is indented. This means

rule was selected in an attempt to resolve an aspect of the chunk in the problem 

retrieve DP’ rule resolves the open =DP value of the S

chunk can unify with the open =DP value of the S-chunk, the 

processor must verify that the DP-chunk does not have any open values. 

chunk, like the S-chunk before it, has an open value, so the processor pushes the 

chunk into the problem state buffer. 

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

 

The processor again checks the contents of the buffers, notes the open =NP in the

chunk (i.e. the new subgoal to ‘process NP’) and the empty retrieval buffer. Given this, the 
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lead to the successful completion of one of the two subgoals. In this case, it selects a ‘retrieve 

means that the 

rule was selected in an attempt to resolve an aspect of the chunk in the problem 

rule resolves the open =DP value of the S-chunk. 

chunk, the 

it, has an open value, so the processor pushes the 

the problem state’s 

) and the empty retrieval buffer. Given this, the 
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processor selects a ‘retrieve NP’ rule, which retrieves the NP-duke-chunk. 

 

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

 

 

The NP has no open values, so the processor selects a ‘pop NP’ rule. At this point, the NP-chunk 

becomes available for unification. The chunk that was associated with the next subgoal (i.e. the 

DP-chunk whose subgoal was ‘process NP’) has an open =NP value, which matches the type of 

the popped chunk, so the NP-chunk and the open =NP value of the DP-chunk can unify. 

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

   

 

The values of the DP-chunk are filled, so the processor selects the ‘pop DP’ rule, making 

the DP available for unification. The DP-chunk matches the open values in the chunk associated 

with the next subgoal (i.e. the S-chunk’s open =DP value and ‘process DP’ subgoal), so the DP 

and the open =DP value in the S-chunk unify.   

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

isa : NP1

orth: duke

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

isa : NP1

orth: duke

!pop!-NP1
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retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

   

 

In the depiction above, the reduction of the font size of the NP-duke-chunk denotes the onset of 

the chunk’s decay. Henceforth, I do not show chunks that have been popped and unified. 

 The processor has satisfied the DP subgoal, so it turns to the next subgoal (‘process VP’). 

The processor notes this goal in the problem state and the empty retrieval buffer, so it selects a 

rule likely to help resolve this subgoal. In this case, it selects a ‘retrieve VP’ rule and retrieves 

the VP-promise-chunk and places it in the retrieval buffer.  

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

   

 

The VP-promise-chunk has two open ‘comp’ values. One selects for a DP. The other selects for 

either a DP or PP chunk. Rather than having two independent VP-promise-chunks (one that 

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

isa : NP1

orth: duke

!pop!-NP1!pop!-DP1

process sentence

isa : S

spec : the duke

comp : =VP

isa : VP

orth: promise

comp : = DP2

=DP3/PP
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selects a DP and PP for the prepositional dative form and one that selects two DPs for the double 

object form), I use the denotation =DP/PP above to indicate optionality. Pragmatic and semantic 

information that might bias toward one completion or the other is not included in the current 

example. Here, I focus strictly on syntactic processing though leave open the possibility for 

separate levels of pragmatic or semantic processing. The processor keeps track of which rules are 

retrieved and fired and whether the pattern of firings led to the creation of two DPs (the double 

object form of the dative alternation) or a DP and a PP (the prepositional forms of the dative 

alternation).  

 Returning to the processing at hand, the processor notes the open values in the VP, so it 

selects a ‘push VP’ rule to put it in the problem state buffer. The processor again checks the 

buffers, notes the open values in the VP-chunk currently in the problem state buffer and the 

empty retrieval buffer and selects a ‘retrieve DP’ rule. 

 

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

 

 

Next, the processor notes the open value in the DP-chunk, so it selects a ‘push DP’ rule to move 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP2

orth: the

comp : = NP2

isa : VP

orth: promise

comp : = DP2

=DP3/PP
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it into the problem state buffer. The processor then selects a ‘retrieve NP’ rule in an attempt to 

help resolve the open values in the VP-chunk. 

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

       

 

There are no open values in the NP-duchess-chunk, so the processor fires a ‘pop NP’ rule, 

making the NP available for unification. The values of this chunk match the open values of the 

DP-chunk associated with the problem state buffer. The popped NP unifies with the open =NP 

value of the DP-chunk.  

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP2

orth: the

comp : = NP2

isa : NP2

orth: duchess

isa : VP

orth: promise

comp : = DP2

=DP3/PP

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP2

orth: the

comp : = NP2

isa : NP2

orth: duchess

isa : VP

orth: promise

comp : = DP2

=DP3/PP

!pop!-NP2
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 The open value in the DP is now resolved, so the DP-chunk is popped from the buffer and 

becomes available for unification.  Its values match the open =DP value in the VP-chunk, so they 

unify.  

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

 

 

The first argument of the VP-promise-chunk is now filled. However, because it still has an open 

value, the VP chunk remains in the problem state buffer.  

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP2

orth: the

comp : duchess

isa : VP

orth: promise

comp : = DP2

=DP3/PP

process sentence

isa : S

spec : the duke

comp : =VP

isa : VP

orth: promise

comp : =the duchess

=DP3/PP
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The processor notes the open value in the VP-chunk (i.e. the =DP/PP) and the empty retrieval 

buffer. It selects among the production rules and fires a ‘retrieve DP’ chunk, which returns the 

‘DP-the-chunk’ and places it in the retrieval buffer. 

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

     

The DP-chunk also has an open value, so the processor chooses a ‘push DP’ rule. Then it begins 

work on processing an NP to resolve this open value, firing a ‘retrieve NP’ rule, which returns 

the NP-rubies-chunk. 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP3

orth: the

comp : =NP3

isa : VP

orth: promise

comp : the duchess

=DP3/PP
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retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

 

 

The NP-chunk has no open values, so the processor selects a ‘pop NP’ rule, making the NP 

available for unification. Because its value (NP) matches the open value in the DP-chunk, the 

popped NP unifies with the open =NP value of the DP-chunk. 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP3

orth: the

comp : =NP3

isa : NP3

orth: rubies

isa : VP

orth: promise

comp : the duchess

=DP3/PP
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retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

 

 

The DP has no open values, so the processor selects a ‘pop DP’ rule. The DP unifies with the 

open =DP value in the VP-chunk. 

  

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP3

orth: the

comp : =NP3

isa : NP3

orth: rubies

isa : VP

orth: promise

comp : the duchess

=DP3/PP

!pop!-NP3
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retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

 

All of the rules used to process the open values of the VP-promise-chunk ultimately worked to 

resolve the subgoals of that chunk. Because they all fired to resolve the VP-promise-chunk’s 

subgoals, the rules are associated with the same unification chain. All the rules used to process 

the first DP2 and the second DP3 are part of the same subgoal structure (i.e. the structure 

necessary to satisfy the ‘process VP’ subgoal). Each of the unifications that followed one of the 

‘pop’ rules resolved an open value of its larger subgoal, making them part of the same 

unification chain and, hence, part of the same memory trace. 

 Now that the VP’s open values are resolved, the processor selects a rule to pop it from the 

buffer system. It is available for unification. The final chunk associated with the problem state 

(i.e. the S-chunk) has an open =VP value. The popped VP-chunk and the open =VP value of the 

process sentence

isa : S

spec : the duke

comp : =VP

isa : DP3

orth: the

comp : rubies

isa : VP

orth: promise

comp : the duchess

=DP3/PP

!pop!-DP3
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S-chunk unify. 

 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

 

 

The S-chunk has no open values, so the processor pops it from the buffer system, and it unifies 

with the main goal ‘process sentence’ in the control state. 

  

process sentence

isa : S

spec : the duke

comp : =VP

isa : VP

orth: promise

comp : the duchess

the rubies

!pop!-VP
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retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

unify S with control state 

 

 

As suggested by the right-hand column, each rule fired in pursuit of the same goal (i.e. the 

processing of the sentence “The duke promised the duchess the rubies”), and as such are 

associated with the same unification chain. All the rules that were involved in the processing of 

the subject DP and the predicate VP satisfied the subgoals of the same S-chunk, so they are 

linked (see Chapter 2, section 3.4.1 for discussion). Because they are linked, they are represented 

together in LTM. When the processor retrieves the sentence, it retrieves this series of firings.  

In this example, the prime (i.e. the DP form of the dative alternation) occurred in the 

matrix clause. The unification chain in which it occurred was associated with 21 rule 

process sentence

isa : S

spec : the duke

comp : promise the 

duchess the rubies

!pop!-VP
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applications, as shown in Table 4.15: 

Table 4.15: List of rules for the processing of the matrix DO alternation 

retrieve S-chunk 

push S-chunk 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

unify S with control state 

  

In what follows, I show how the other sentence types examined in Experiments 1 and 2 

are processed by the model presented in Chapter 2. Whenever possible, I refer the example just 

discussed rather than repeat the process in full. Furthermore, rather than demonstrating the 

retrieval of each chunk, its popping, and its unification as in the previous example, I show only 

the rules used for the processing. Appendix 4E provides further detail. PRICE contends that 

different patterns of priming arise due to the way memory represents the processing of sentences, 

and this representation is described as the unification chain, or chains, generated during the 
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processing event. I begin by comparing the chain generated during the processing of the 

sentences used in the Verb Complement (VC) condition. Recall that these sentence type mirror 

Branigan et al.’s (2006) sentence types and included primes in matrix sentences preceded by 

adverbial clauses and primes embedded in verb complement clauses. Examples are given below 

with the alternation underlined and the relevant context in brackets. 

(30) Prime in matrix clause with introductory adverbial clause 

 As the report declared, [the duke promised the duchess the rubies]. 

 

(31) Prime in verb complement clause 

The report declared [that the duke promised the duchess the rubies]. 

 

I begin with the processing of sentence (30), “As the reported declared, the duke promised the 

duchess the rubies.” As in the matrix example above, the processor has the main goal ‘process 

sentence’ in the control buffer. This goal initiates the firing of a ‘retrieve S-chunk’ rule. The S-

chunk is placed in the retrieval buffer. However, because it has two open values (=DP and 

=VP),
1
 it cannot be popped and is, instead, pushed into the problem state via a ‘push S’ rule:   

‘process sentence’ The state of the control buffer is to process a sentence 

retrieve S-chunk 

push S-chunk 

The processor retrieves an S-chunk and pushes it into the 

problem state because of its open values. 

 

At this point, the processor retrieves an AdvC , which also contains open values (i.e. ‘spec : 

=Adv’, ‘comp : =S’, and ‘mod : =S’). This retrieval does not follow directly from the needs of 

the chunk in the problem state buffer. That is, the selection an AdvC does not necessarily assist 

in resolving the open values in the S-chunk. I denote this by separating the AdvC’s retrieval from 

the S-chunk. This separation becomes more relevant as the processing continues and different 

                                                 
1
 See Appendix 2A for a list of the chunks including their open values. 
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unification chains are generated. Because the AdvC has open values, the processor selects a 

‘push AdvC’ rule, moving it into the problem state buffer. 

‘process sentence’ The state of the control buffer is to process a sentence 

retrieve S-chunk 

push S-chunk 

The processor retrieves an S-chunk and pushes it into the 

problem state because of its open values. 

retrieve AdvC 

push AdvC 

The processor retrieves a AdvC-chunk and places it into the 

retrieval buffer and then pushes it into the problem state because 

of its open values (‘spec :=Adv’, ‘comp : =S’, and ‘mod : =S’).
 1
 

 

The processor evaluates the problem state buffer and the retrieval buffer and selects a rule to 

retrieve an adverb. It selects an Adv-as-chunk and places it into the retrieval buffer. Because this 

chunk has no open values it is popped. 

‘process sentence’ The state of the control buffer is to process a sentence 

retrieve S-chunk 

push S-chunk 

The processor retrieves an S-chunk and pushes it into the 

problem state because of its open values 

retrieve AdvC 

push AdvC 

The processor retrieves a AdvC-chunk and places it into the 

retrieval buffer and then pushes it into the problem state because 

of its open values (‘spec :=Adv’, ‘comp : =S’, and ‘mod : =S’). 

  retrieve Adv    

  pop Adv 

unify Adv with AdvC  

The processor retrieves an adverb and places it into the 

retrieval buffer. It has no open values, so it is popped and 

unified with the AdvC. 

  

 

The Adv-as-chunk’s values unify with the =Adv value in the AdvC-chunk. However, the 

processor is not finished with the AdvC chunk. The chunk still has two open values, i.e. ‘comp : 

=S’ and ‘mod : =S.’  The processor fires an S-chunk retrieval rule and places the S-chunk in the 

retrieval buffer. Because the S-chunk has open values, it too is pushed into the problem state 

buffer.   

                                                 
1
 The ‘mod’ value denotes the type of XP that the AdvC needs to modify. See Chapter 2, section 3.3.1 for further 

discussion. 
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‘process sentence’ The state of the control buffer is to process a sentence 

retrieve S-chunk 

push S-chunk 

The processor retrieves an S-chunk and pushes it into the 

problem state because of its open values 

retrieve AdvC 

push AdvC 

The processor retrieves a AdvC-chunk and places it into the 

retrieval buffer and then pushes it into the problem state because 

of its open values (‘spec :=Adv’, ‘comp : =S’, and ‘mod : =S’). 

  retrieve Adv    

  pop Adv 

unify Adv with =Adv in AdvC  

The processor retrieves an adverb and places it into the 

retrieval buffer. It has no open values, so it is popped and 

unified with the AdvC. 

  retrieve S2-chunk 

  push S2-chunk  

 

The processor retrieves an S-chunk and pushes it into the 

problem state buffer. 

 

The S-chunk has two open values: ‘spec : =DP’ and ‘comp : =VP-gap.’ The open value in the 

spec feature is the same as in the previous S-chunks. However, the VP-gap value is new. This 

VP-gap allows the processor to note that it is processing a structure that contains a gap (see 

Lewis & Vashisth 2005 for discussion). I return to the processing of the VP-gap-chunk below. 

The processor begins by firing the rules necessary to retrieve, push, and pop the chunks 

associated with the processing of the “the report” DP. The production rules are shown below.  
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‘process sentence’ The state of the control buffer is to process a sentence 

retrieve S-chunk 

push S-chunk 

The processor retrieves an S-chunk and pushes it into the 

problem state because of its open values 

retrieve AdvC 

push AdvC 

The processor retrieves a AdvC-chunk and places it into the 

retrieval buffer and then pushes it into the problem state because 

of its open values (spec : =Adv, comp :  =S, mod =S). 

 

  retrieve Adv    

  pop Adv 

unify Adv with =Adv in AdvC  

 

The processor retrieves an adverb and places it into the 

retrieval buffer. It has no open values, so it is popped and 

unified with the AdvC. 

  retrieve S2-chunk 

  push S2-chunk  

 

The processor retrieves an S-chunk and pushes it into the 

problem state buffer. 

    retrieve DP1-chunk 

    push DP1-chunk  

 

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in DP-chunk  

 

       pop DP1  

unify DP with =DP in S-chunk 
 

The processor retrieves the DP-the-chunk, places it into the 

retrieval buffer. 

 

It then retrieves the NP-report-chunk and pops it. 

It unifies with the open =NP value in the DP-chunk. 

 

 

The processor pops the DP, which then unifies with the 

open =DP value in the S-chunk. 

At this point, the S-chunk in the problem state has one open value =VP-gap. The processor notes 

this and the empty retrieval buffer. It fires a ‘retrieve VP-gap’ rule and returns the VP-gap-

declare-chunk. This chunk, as shown below,
1
 has an empty ‘___’ associated with its ‘comp’ 

feature and a ‘gap’ feature that needs a filler of the type S. These lists are ultimately saturated by 

the values of the open =S value in the AdvC-chunk in a manner similar to the way the filler-gap 

dependency is satisfied in relative clause constructions (see Chapter 3, section 5.5.2 for 

discussion).  

VP-gap-declare-chunk 
         isa : VP-gap 
          orth: declare 

          comp : __ 

          gap : =S 
 

                                                 
1
 See Appendix 2A for a complete list of chunks. 
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The VP-gap chunk is unified with the open =VP-gap-chunk value of the S-chunk, passing the 

gap up. The S-chunk’s values are now all resolved because its VP-gap value is filled, so the S-

chunk is popped and unified with the open =S value in the AdvC-chunk. The AdvC-chunk has 

no open values, so it is popped from the buffer systems. It is available for unification, but the 

chunk in the problem state (i.e. the S-chunk) does not have an open =AdvC. The popped-AdvC 

cannot, therefore, unify with anything in the current problem state, so its syntactic representation 

proceeds to long-term memory (LTM). 

‘process sentence’ The state of the control buffer is to process a sentence 

retrieve S-chunk 

push S-chunk 

The processor retrieves an S-chunk and pushes it into the 

problem state because of its open values. 

retrieve AdvC 

push AdvC 

The processor retrieves a AdvC-chunk and places it into the 

retrieval buffer and then pushes it into the problem state because 

of its open values (spec : =Adv, comp :  =S, mod =S). 

 

  retrieve Adv    

  pop Adv 

unify Adv with =Adv in AdvC  

 

The processor retrieves an adverb and places it into the 

retrieval buffer. It has no open values, so it is popped and 

unified with the AdvC. 

  retrieve S2-chunk 

  push S2-chunk  

 

The processor retrieves an S-chunk and pushes it into the 

problem state buffer. 

    retrieve DP1-chunk 

    push DP1-chunk  

 

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in DP-chunk  

 

       pop DP1  

unify DP with =DP in S-chunk 
 

The processor retrieves the DP-the-chunk, places it into the 

retrieval buffer. 

 

It then retrieves the NP-report-chunk and pops it. 

It unifies with the open =NP value in the DP-chunk. 

 

 

The processor pops the DP, which then unifies with the 

open =DP value in the S-chunk. 

    retrieve VP-gap-chunk 

     pop VP  

unify VP with =VP-gap in S-chunk 
 

The processor retrieves the VP-declare-gap-chunk, pops it 

from the retrieval buffer and unifies it with the open =VP 

value  in the S-chunk. 

       pop S 

unify S with AdvC-chunk 
 

The processor pops the S-chunk and unifies it with the AdvC-

chunk. 

 pop AdvC 

����send to LTM 

 

The processor pops the AdvC. It has nothing to unify with, so it 

is sent to long-term memory. 
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The processor checks the buffer states, notes that the retrieval buffer is empty and that the 

problem state still has the S-chunk with its open =DP and =VP, so it returns to the subgoals 

associated with these open values. The processing of the =DP subject and =VP predicate of the 

matrix clause proceeds just as it did in the matrix example above. Rather than repeat the 

processing steps here, I simply add them to the list of rules used thus far.  

Combining the process of this matrix clause with the processing of the AdvC, we end up 

the list of production rule below: 
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‘process sentence’ 
retrieve S-chunk 

push S-chunk 

retrieve AdvC 

push AdvC 

  retrieve Adv    

  pop Adv 

unify Adv with =Adv in AdvC  

  retrieve S2-chunk 

  push S2-chunk 

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in DP-chunk  

       pop DP1  

unify DP with =DP in S-chunk 
    retrieve VP-gap-chunk 

     pop VP  

unify VP with =VP-gap in S-chunk 
       pop S 

unify S with AdvC-chunk 
 pop AdvC 

����send to LTM 

  retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

unify S with control state 
 

 

In the above depiction, the AdvC production rules are separated (as indicated by the horizontal 
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lines) from the rules used to process the matrix clause.  

 During subsequent retrieval of the sentence “As the report declared, the duke promised 

the duchess the rubies,” the processor retrieves the unification chain associated with the 

processing of the adverbial clause and the chain associated with the processing of the matrix 

clause, as shown in Table 4.16 below. 

Table 4.16: Unification chains for matrix prime with adverbial clause 

“as the report declared”     “the duke promised the  

        duchess the rubies” 
retrieve AdvC 

push AdvC 

retrieve S-chunk 

push S-chunk  
retrieve DP-chunk 

  push DP-chunk 

    retrieve NP-chunk  
    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 
    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 
      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 
      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

unify S with control state 

  retrieve Adv   

  pop Adv 

unify Adv with =Adv in AdvC  
  retrieve S2-chunk 

  push S2-chunk 

    retrieve DP1-chunk 
    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in DP-chunk  

       pop DP1  

unify DP with =DP in S-chunk 
    retrieve VP-gap-chunk 

     pop VP  

unify VP with =VP-gap in S-chunk 
       pop S 

unify S with AdvC-chunk 
 pop AdvC 

 

    

When the processor determines the utility of a rule, it evaluates each rule according to the 

number of other rules that are associated with the rule’s unification chain. The more rules 

associated with chain, the lower the utility of each rule.  

In the current example, the prime is associated with the matrix chain (right-hand column). 

When the processor needs to evaluate the utility of using the primed form (DO) or the alternate 
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(PD), it estimates the utility partly on the basis of how costly the rule was when applied in the 

processing of the prime sentence. That is, it estimates the utility of the prime form based, in part, 

on how many other rules need to fire in order for the main goal to be successfully resolved.  

To illustrate, consider the difference between processing the adverbial clause sentence 

above and the processing of the verb complement clause sentence repeated below. 

(31) Prime in verb complement clause 

        The report declared [that the duke promised the duchess the rubies]. 

 

 

The processing proceeds in a manner similar to that as in the previous example up to the retrieval 

of the first verb.  

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in  DP-chunk 
       pop DP1  

unify DP with =DP in S-chunk 
    retrieve VP1-chunk 

    push VP1-chunk  

 

 

The retrieved verb (i.e. VP-declare-chunk) contains an open value for either a DP or CP 

argument. The processor pushes the VP chunk into the problem state buffer. The processor then 

chooses to build a CP structure to due to pressures coming from, for example, the demands of the 

intended message (e.g. an act of declaring that an act of promising between a duke and duchess 

involving rubies occurred). Because this choice of a CP can lead to the resolution of a subgoal 

currently in the problem state, the CP is represented as occurring in the same processing line as 
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the VP (i.e. there is no line separating them). The table below contains all the rules up to the 

retrieval of the CP and the rules that fire to satisfy the CP-chunk’s open =Comp value. 

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in  DP-chunk 
       pop DP1  

unify DP with =DP in S-chunk 
    retrieve VP1-chunk 

    push VP1-chunk  

      retrieve CP-chunk 

      push CP-chunk    

         retrieve Comp-chunk 

       pop Comp-chunk 

unify Comp with CP  
 

 

At this point, the processor follows the same pattern of rule firings as shown in the two matrix 

examples shown above, leading to the processing of a DO form. 
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‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in  DP-chunk 
       pop DP1  

unify DP with =DP in S-chunk 
    retrieve VP1-chunk 

    push VP1-chunk  

      retrieve CP-chunk 

      push CP-chunk    

         retrieve Comp-chunk 

       pop Comp-chunk 

unify Comp with CP  
  retrieve S2-chunk 

  push S2-chunk 

    retrieve DP1-chunk 

      push DP1-chunk 

        retrieve NP1-chunk 

        pop NP2  

unify NP with =NP in DP-chunk 
         pop DP2  

unify DP with =DP in S-chunk 
    retrieve VP-chunk 

    push VP-chunk 

      retrieve DP3-chunk 

      push DP3-chunk 

         retrieve NP3-chunk 

          pop NP3  

unify NP with =NP in DP-chunk 
            pop DP3 

unify DP with =DP in VP-chunk 
       retrieve DP4-chunk 

       push DP4-chunk 

          retrieve NP4-chunk 

           pop NP4  

unify NP with =NP in DP-chunk 
            pop DP4 

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 
      pop S  

 

Now, the S-chunk unifies with the open =S value in the CP-chunk. The CP-chunk is popped and 
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unified with the open =CP value in the VP-chunk. The VP chunk pops and unifies with the open 

=VP value in the S chunk, thereby resolving the last subgoal in the problem state. 

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in  DP-chunk 
       pop DP1  

unify DP with =DP in S-chunk 
    retrieve VP1-chunk 

    push VP1-chunk  

      retrieve CP-chunk 

      push CP-chunk    

         retrieve Comp-chunk 

       pop Comp-chunk 

unify Comp with CP  
  retrieve S2-chunk 

  push S2-chunk 

    retrieve DP1-chunk 

      push DP1-chunk 

        retrieve NP1-chunk 

        pop NP2  

unify NP with =NP in DP-chunk 
         pop DP2  

unify DP with =DP in S-chunk 
    retrieve VP-chunk 

    push VP-chunk 

      retrieve DP3-chunk 

      push DP3-chunk 

         retrieve NP3-chunk 

         pop NP3  

unify NP with =NP in DP-chunk 
            pop DP3 

unify DP with =DP in VP-chunk 
       retrieve DP4-chunk 

       push DP4-chunk 

          retrieve NP4-chunk 

          pop NP4  

unify NP with =NP in DP-chunk 
            pop DP4 

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 
      pop S  

unify S with CP-chunk 
       pop CP 

unify CP with VP1-chunk 
       pop VP1 

unify VP with S1-chunk 
       pop S  
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The popped S unifies with the main goal in the control state, and the processing of the sentence 

is complete. Unlike the previous example for sentence (30) (i.e. the matrix prime with an 

introductory adverbial clause), all of the rules fired in this example are associated with the same 

unification chain. Each retrieval, pushing, and popping worked to satisfy the same subgoal 

structure. Thus, when the processor retrieves the memory trace for the sentence “The report 

declared that the duke promised the duchess the rubies,” it retrieves the entire sequence of rules 

that are associated with the unification chain that was built during the processing of the sentence. 

This chain, in which the prime occurs, is noticeably longer than the matrix chain, in which the 

previous example’s prime occurred. Compare the number of rules in Table 4.17 below. 

  



325 

 

 

Table 4.17: Comparison of unification chains for matrix and verb complement clause  

   Matrix clause      Verb complement clause 

retrieve S-chunk 

push S-chunk  
retrieve DP-chunk 

  push DP-chunk 
    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 
      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 
    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

unify S with control state 
 

retrieve S-chunk 

push S-chunk  
    retrieve DP1-chunk 

    push DP1-chunk  
      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in  DP-chunk 
       pop DP1  

unify DP with =DP in S-chunk 
    retrieve VP1-chunk 
    push VP1-chunk  

      retrieve CP-chunk 

      push CP-chunk    
         retrieve Comp-chunk 

       pop Comp-chunk 

unify Comp with CP  
  retrieve S2-chunk 

  push S2-chunk 

    retrieve DP1-chunk 
      push DP1-chunk 

        retrieve NP1-chunk 

         pop NP2  

unify NP with =NP in DP-chunk 
         pop DP2  

unify DP with =DP in S-chunk 
    retrieve VP-chunk 

    push VP-chunk 

      retrieve DP3-chunk 
      push DP3-chunk 

         retrieve NP3-chunk 

         pop NP3  

unify NP with =NP in DP-chunk 
            pop DP3 

unify DP with =DP in VP-chunk 
       retrieve DP4-chunk 

       push DP4-chunk 

          retrieve NP4-chunk 
          pop NP4  

unify NP with =NP in DP-chunk 
            pop DP4 

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 
      pop S  

unify S with CP-chunk 
       pop CP 

unify CP with VP1-chunk 
       pop VP1 

unify VP with S1-chunk 
       pop S  

21 rules 40 rules 

 

Here we see that the prime occurs in a much longer chain of rules. For the verb complement 
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clause prime sentence, 40 rule firings occurred during the processing of the sentence in which the 

prime occurred. For the matrix clause prime in the sentence with an introductory adverbial 

clause, only 21 rule firings are associated with the prime’s unification chain. According to 

PRICE, the higher number of rules decreases the utility of the rules. This decreased utility should 

lead to weaker priming effects.   

 At the short lags (i.e. Experiment 1), there was no difference between primes in these two 

sentence types. However, at long lags, significant differences did arise. Specifically, priming 

from verb complement clauses disappeared. This behavior is in keeping with PRICE. Recall that 

there are two main factors affecting the likelihood of a rule’s (or rule pattern’s) use: strength and 

utility. Utility is determined by the number of rules necessary for processing and the likelihood 

of success minus the cost of using the rules. Thus, utility is affected by structural context. The 

larger the chain, the weaker the utility. However, this is not the only factor the processor 

considers. It also considers the strength of the rules. This factor is affected by the recency of a 

rule’s use and may be sufficient to make its retrieval more likely. PRICE contends that as the 

strength wanes and returns to the baseline, utility becomes more relevant. Due to the low utility 

score of the prime in verb complement clauses, the prime is less likely to demonstrate priming 

than primes with higher utility scores (e.g. those occurring in matrix position) when its strength 

drops below some threshold. 

 Another of PRICE’s predictions was that primes occurring in argument clauses differ 

from primes occurring in adjunct clauses. In the current experiments, this would mean that 

priming from verb complement clauses and relative clauses should differ. Before testing this 
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prediction, let us consider the processing of the two prime sentence types in the Relative Clause 

condition. (32) and (33) contain examples in which the prime alternate is underlined and the 

relative clause is in brackets. 

 (32) Prime in matrix position of sentence with subject-modifying relative clause 

  The duke [who loved the king] promised the duchess the rubies. 

 

 (33) Prime embedded in object-modifying relative clause 

  The king loved the duke [who promised the duchess the rubies]. 

 

We begin with the relative clause sentence in which the dative alternation occurs in matrix 

position (i.e. (32)). In this sentence type, the processor begins as it normally would, by retrieving 

an S-chunk, placing it into the problem state buffer, and initiating the series of retrievals, 

pushings, and poppings necessary to build the subject DP. This process is shown up to the 

popping of the NP.  

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

 

At this point, rather than unifying the popped NP with the open =NP value in the DP-chunk 

associated with the next subgoal, the processor retrieves a RelC from long-term memory and 

places it in the retrieval buffer.  

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

retrieve RelC 
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The retrieval of the RelC is a departure from the subgoal stack currently in the problem state. 

Unlike the retrieval of an NP-chunk, which can ultimately lead to the resolution of a current 

subgoal in the stack, the retrieval of a RelC-chunk initiates a new subgoal chain, as denoted by 

the horizontal line between the ‘pop NP’ and the ‘retrieve RelC’ rules. Although rules that 

specifically address the needs of the problem state may be more likely (e.g. because their utility 

for resolving the subgoal may be high), the processor may select other rules in order to satisfy 

other pressures, such as pragmatic or semantic concerns. 

 Now that the RelC-chunk is in the retrieval buffer, the processor begins work on the 

‘process RelC’ subgoal. The RelC-chunk has open values (i.e. ‘spec : =RelP,’ ‘comp : =S-gap,’ 

and ‘mod : =NP’), so the processor pushes the chunk into the problem state and begins work on 

the ‘process RelP’ subgoal. This subgoal leads to the retrieval of the RelP-who-chunk. This 

chunk has no open values, so it is popped and unifies with the =RelP value of the RelC-chunk. 

Below are the rules associated with the processing up to this point. 

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
       

 

The processor now moves on to satisfy the next subgoal (i.e. ‘comp : =S-gap’). It fires a ‘retrieve 
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S-gap’ rule and places the S-gap-chunk in the retrieval buffer. A rule then pushes it into the 

problem state buffer. 

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
      retrieve S-gap-chunk 

      push S-gap-chunk 

         

The S-gap-chunk contains an open gap feature, as denoted by the gap : ___ (see Chapter 2, 

Appendix 2A for a complete listing of the chunks and Chapter 3, section 5 for a discussion of 

how chunks with gap features unify). It also contains a ‘gap’ feature that requires a filler of the 

type NP, as denoted by the =NP. These two features and their values indicate that the subject of 

the relative clause is ‘extracted’ and that information about this extracted element is ultimately 

provided by the filler (i.e. the  values of the NP-chunk that unify with the open =NP in the ‘mod’ 

of the RelC-chunk) via a subject extraction lexical rule (Sag, Wasow, & Bender 2003). 

 Now, we move onto the processing of the S-gap-chunk’s ‘process VP’ subgoal. This 

subgoal leads to the retrieval of the VP-love-chunk, which is then pushed into the problem state 

buffer so that its open =DP value can be resolved. Below are the rules and unifications necessary 

for the processing of the rest of the RelC up to the point where the S-gap-chunk unifies with the 

open =S-gap value in the RelC-chunk. 
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‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
      retrieve S2-chunk 

      push S2-chunk 

        retrieve VP2-chunk 

        push VP2-chunk    

            retrieve DP2-chunk 

            push DP2-chunk 

              retrieve NP2-chunk 

              pop NP2  

unify NP with =NP in DP-chunk 
             pop DP2  

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 

    pop S 

unify S with =S in RelC-chunk 

 

 

Now all but one of the RelC-chunk’s open values are resolved. The only remaining open value is 

the =NP value in the ‘mod’ feature. Recall that the ‘mod’ feature denotes the type of XP the 

chunk must modify (Chapter 2, section 3.3.1), in this case an NP. The processor fires a ‘retrieve 

NP’ rule. Due to its recent processing, the processor retrieves the NP-duke-chunk and places it in 

the retrieval buffer. Because this NP-chunk is the same chunk that the processor previously 

retrieved, I use the same numbering for it (i.e. NP1). The processor then pops the NP-chunk. It 

unifies with the open =NP value in the RelC-chunk, thereby resolving all of the RelC’s open 

values. 
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‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
      retrieve S-gap-chunk 

      push S-gap-chunk 

        retrieve VP2-chunk 

        push VP2-chunk    

            retrieve DP2-chunk 

            push DP2-chunk 

              retrieve NP2-chunk 

              pop NP2  

unify NP with =NP in DP-chunk 
             pop DP2  

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 

    pop S 

unify S with =S in RelC-chunk 

     retrieve NP1-chunk 

     pop NP1  

unify NP with =NP in RelC-chunk 

pop RelC 

 

 

The processor pops the RelC, and it becomes available for unification. However, the subgoal 

currently in the problem state buffer (i.e. the ‘process NP’ associated with the open =NP value in 

the DP-the-chunk in the problem stated) does not have an open =RelC value. Because the RelC-

chunk cannot unify with an open value in the next subgoal, it proceeds to LTM, and the 

processor begins work on the most active subgoal: ‘process NP.’ 
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‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
      retrieve S-gap-chunk 

      push S-gap-chunk 

        retrieve VP2-chunk 

        push VP2-chunk    

            retrieve DP2-chunk 

            push DP2-chunk 

              retrieve NP2-chunk 

              pop NP2  

unify NP with =NP in DP-chunk 
             pop DP2  

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 

    pop S 

unify S with =S in RelC-chunk 

     retrieve NP1-chunk 

     pop NP1  

unify NP with =NP in RelC-chunk 

pop RelC 

� send to LTM 

 

 

The subgoal ‘process NP’ must be resolved to satisfy the DP-chunk’s open =NP value. The 

processor must again fire a ‘retrieve NP’ rule that, again, returns the NP-duke-chunk. The NP-

chunk is placed into and then popped from the retrieval buffer. It unifies with the open =NP 

value in the DP-chunk.  
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‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
      retrieve S-gap-chunk 

      push S-gap-chunk 

        retrieve VP2-chunk 

        push VP2-chunk    

            retrieve DP2-chunk 

            push DP2-chunk 

              retrieve NP2-chunk 

              pop NP2  

unify NP with =NP in DP-chunk 
             pop DP2  

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 

    pop S 

unify S with =S in RelC-chunk 

     retrieve NP1-chunk 

     pop NP1  

unify NP with =NP in RelC-chunk 

pop RelC                                                  ���� send to LTM 

     retrieve NP1-chunk 

     pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

unify S with control state 
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All of the rules that fired during the processing of  the matrix clause, i.e. the clause with the 

dative verb, are associated with the same unification chain. The rules associated with processing 

the matrix clause are associated with a single unification chain, whereas the rules associated with 

the relative clause are associated with a separate chain. The processor considers only the rules 

associated with the unification chain built during the processing of the matrix clause in the left-

hand column below. 

Table 4.18: Unification chains for matrix prime with relative clause 

“the duke promised the duchess the rubies” “who loved the king” 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

     retrieve NP1-chunk 

     pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

unify S with control state 

retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  

      retrieve S-gap-chunk 

      push S-gap-chunk 

        retrieve VP2-chunk 

        push VP2-chunk    

            retrieve DP2-chunk 

            push DP2-chunk 

              retrieve NP2-chunk 

              pop NP2  

unify NP with =NP in DP-chunk 
             pop DP2  

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 

    pop S 

unify S with =S in RelC-chunk 

     retrieve NP1-chunk 

     pop NP1  

unify NP with =NP in RelC-chunk 

pop RelC 

� send to LTM 

  

  

Compare the processing of this prime with the processing of a prime embedded within a 
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relative clause, e.g. (33) repeated below: 

 (33) Prime embedded in object-modifying relative clause 

  The king loved the duke [who promised the duchess the rubies]. 

 

The processor begins by retrieving an S-chunk and following the pattern of rules necessary for 

building a subject DP and a predicate VP. 

 

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP1-chunk  

  push VP1-chunk 

    retrieve DP2-chunk 

    push DP2-chunk 

      retrieve NP2-chunk       

       pop NP2-chunk 

      

 

Here we see the pattern of retrievals, pushings, and poppings that takes us up to the point where 

the NP is popped and the relative clause begins. Just as in the previous relative clause example, 

the processor selects a ‘retrieve RelC’ rule, which generates a new subgoal structure (‘process 

RelC’).  
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‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP1-chunk  

  push VP1-chunk 

    retrieve DP2-chunk 

    push DP2-chunk 

      retrieve NP2-chunk       

       pop NP2-chunk    
retrieve RelC  

   push RelC  

     retrieve RelP  

       pop RelP  

unify RelP with =Rel P of RelC  
    retrieve S2-chunk 

    push S2-chunk 

 retrieve VP2-chunk 

     push VP2-chunk 

      retrieve DP3-chunk 

      push DP3-chunk 

         retrieve NP3-chunk 

          pop NP3  

unify NP3 with =NP of DP-chunk 
            pop DP3 

unify DP with =DP of VP-chunk 
       retrieve DP4-chunk 

       push DP4-chunk 

          retrieve NP4-chunk 

          pop NP4  

unify NP with =NP of DP-chunk             
          pop DP4 

unify DP with =DP of VP-chunk 
       pop VP2 

unify VP with =VP of S-chunk 
      pop S-gap-chunk 

unify S with RelC-chunk 
  

   

The above pattern of rules tracks the processing of a RelC containing a DO prime. Upon 

completing this, the processor pops the RelC, retrieves the NP, and places it in the retrieval 

buffer. After it is popped, it unifies with the open =NP value in the RelC-chunk’s ‘mod’ feature. 
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All the open values of the RelC are now resolved, and it can be popped from the buffer system. 

‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP1-chunk  

  push VP1-chunk 

    retrieve DP2-chunk 

    push DP2-chunk 

      retrieve NP2-chunk       

       pop NP2-chunk    
retrieve RelC  

   push RelC  

     retrieve RelP  

       pop RelP  

unify RelP with =Rel P of RelC  
    retrieve S2-chunk 

    push S2-chunk 

 retrieve VP2-chunk 

     push VP2-chunk 

      retrieve DP3-chunk 

      push DP3-chunk 

         retrieve NP3-chunk 

          pop NP3  

unify NP3 with =NP of DP-chunk 
            pop DP3 

unify DP with =DP of VP-chunk 
       retrieve DP4-chunk 

       push DP4-chunk 

          retrieve NP4-chunk 

          pop NP4  

unify NP with =NP of DP-chunk             
          pop DP4 

unify DP with =DP of VP-chunk 
       pop VP2 

unify VP with =VP of S-chunk 
      pop S-gap-chunk  

unify S with RelC-chunk 
       retrieve NP2 

          pop NP2 

unify NP with =NP in RelC-chunk 
    pop RelC                                            ���� send to LTM 

 

The processor picks up the processing of the next subgoal in the problem state, in this case the 

‘process NP’ subgoal associated with the DP-chunk’s open =NP value.  
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‘process sentence’ 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP1-chunk  

  push VP1-chunk 

    retrieve DP2-chunk 

    push DP2-chunk 

      retrieve NP2-chunk       

       pop NP2-chunk    
retrieve RelC  

   push RelC  

     retrieve RelP  

       pop RelP  

unify RelP with =Rel P of RelC  
    retrieve S-gap-chunk 

    push S-gap-chunk 

 retrieve VP2-chunk 

     push VP2-chunk 

      retrieve DP3-chunk 

      push DP3-chunk 

         retrieve NP3-chunk 

          pop NP3  

unify NP3 with =NP of DP-chunk 
            pop DP3 

unify DP with =DP of VP-chunk 
       retrieve DP4-chunk 

       push DP4-chunk 

          retrieve NP4-chunk 

          pop NP4  

unify NP with =NP of DP-chunk             
          pop DP4 

unify DP with =DP of VP-chunk 
       pop VP2 

unify VP with =VP of S-chunk 
      pop S-gap-chunk  

unify S with RelC-chunk 
       retrieve NP2 

          pop NP2 

unify NP with =NP in RelC-chunk 
    pop RelC                                          ���� send to LTM 

       retrieve NP2 

          pop NP2 

unify NP with =NP in DP-chunk 
    pop DP2 

unify DP with =DP in VP-chunk 
    pop VP1 

unify VP with=VP in S 
    pop S1 

unify S with control state 

 

Just as in the previous relative clause sentence, the processor formed two unification chains 
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during the processing of this sentence. Although the two chains are associated with the NP-duke-

chunk, they are distinct. Table 4.19 contains all the rules associated with the two unification 

chains. 

Table 4.19: Unification chains for prime embedded in relative clause 

“the king loved the duke” “who promised the duchess the rubies” 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 

    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP1-chunk  

  push VP1-chunk 

    retrieve DP2-chunk 

    push DP2-chunk 

      retrieve NP2-chunk       

       pop NP2-chunk 

      retrieve NP2-chunk       

       pop NP2-chunk 

unify NP2 with =NP2 of DP2 

    pop DP2-chunk 

unify DP2 with =DP2 of VP1 

  pop VP1-chunk 

unify VP with =VP of S1 

pop S1-chunk 

unify S with control state 

retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
      retrieve S-gap-chunk 

      push S-gap-chunk 

  retrieve VP2-chunk  

  push VP2-chunk 

    retrieve DP3-chunk 

    push DP3-chunk 

      retrieve NP3-chunk 

      pop NP3-chunk 

unify NP3 with =NP4of DP3 

    pop DP3-chunk 

unify DP3 with =DP3 of VP 

    retrieve DP4-chunk 

    push DP4-chunk 

      retrieve NP4-chunk  

      pop NP4-chunk 

unify NP4 with =NP4 of DP4 

    pop DP4-chunk 

unify DP4 with =DP4 of VP2 

  pop VP2-chunk 

unify VP2 with =VP of S1 

pop S-gap-chunk 

unify S with =S in RelC-chunk 

     retrieve NP2-chunk 

     pop NP2 

unify NP with =NP in RelC-chunk 

pop RelC 

� send to LTM 

  

Recall that the results from the Relative Clause (RC) condition for both Experiment 1 and 

Experiment 2 found no significant difference between the embedded and matrix primes. Priming 

was equally possible from either position. Both SAP and PRICE claim that there should not be 

any difference between these two cases but for different reasons. SAP contends that structural 
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context never affects priming. The results from the VC condition in Experiment 2 challenge this 

contention. PRICE suggests that there should be similar patterns of priming because the number 

of rule firings associated with the processing of the structural contexts in which the primes 

occurred are almost equal, as demonstrated in Table 4.20 below. 

Table 4.20: Comparison of unification chains for relative clause sentences 

Matrix clause  Relative clause 
retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 
    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  
     retrieve NP1-chunk 

     pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 
      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 
    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  
      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

  retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
      retrieve S-gap-chunk 

      push S-gap-chunk 
  retrieve VP2-chunk  

  push VP2-chunk 

    retrieve DP3-chunk 
    push DP3-chunk 

      retrieve NP3-chunk 

      pop NP3-chunk 

unify NP3 with =NP4of DP3 

    pop DP3-chunk 

unify DP3 with =DP3 of VP 
    retrieve DP4-chunk 

    push DP4-chunk 

      retrieve NP4-chunk  
      pop NP4-chunk 

unify NP4 with =NP4 of DP4 

    pop DP4-chunk 

unify DP4 with =DP4 of VP2 

  pop VP2-chunk 

unify VP2 with =VP of S1 

pop S-gap-chunk 

unify S with =S in RelC-chunk 
     retrieve NP2-chunk 

     pop NP2 

unify NP with =NP in RelC-chunk 
pop RelC 

23 rules 22 rules 

 

As discussed in previous sections, utility is affected by the number of rules necessary for the 

processing of a particular structure. The more rules, the lower the utility of each single rule. 

Because the unification chains in the RC conditions are associated with approximately the same 

number of rule firings (23 for the case in which prime is in matrix position with relative clause 

sentence and 22 for the case in which the prime is embedded in the relative clause sentence), 
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they also had similar utility scores. 

 Although there was no difference between the matrix and embedded primes in the RC 

condition, there was an effect of lag such that priming was stronger from both positions at longer 

lags. Previous experiments have found a slight increase in priming after an initial drop following 

one filler item, but in general, priming remains stable over time (Bock & Griffin 2000, 

Hartsuiker et al. 2008, Ferreira et al. 2005). The increase found here may be part of the normal 

increase found in these previous studies. Another possibility is that there is initially less priming 

due to the fact that the processor must saturate the gap list and thereby the empty ‘___’ 

associated with the ‘spec’ feature of the S-gap-chunks with the information from the filler 

element (i.e. the NP-duke-chunk that unifies with the open =NP value of the RelC-chunk. As the 

memories consolidate, this additional processing burden wanes, and the priming from these 

sentences returns to normal, mirroring priming from other clauses that are associated with 

unification chains of similar lengths. I explore this idea again in Chapter 5. 

 Table 4.21 contains a list of all the rules necessary for processing the four different 

structural contexts tested in the VC and RC conditions. 
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Table 4.21: Comparison of rule firings 
In matrix clause of 

sentence with adverbial 

clause 

In verb complement clause In matrix clause of relative 

clause sentence 

In relative clause 

retrieve S-chunk 

push S-chunk  

retrieve DP-chunk 
  push DP-chunk 

    retrieve NP-chunk  

    pop NP-chunk 

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 
    push DP-chunk 

      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 
    retrieve DP-chunk 

    push DP-chunk 

      retrieve NP-chunk  
      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

 

 

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 
    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  

unify NP with =NP in  DP-chunk 
       pop DP1  

unify DP with =DP in S-chunk 
    retrieve VP1-chunk 

    push VP1-chunk  

      retrieve CP-chunk 
      push CP-chunk    

         retrieve Comp-chunk 

       pop Comp-chunk 

unify Comp with CP  
  retrieve S2-chunk 

  push S2-chunk 
    retrieve DP1-chunk 

      push DP1-chunk 

        retrieve NP1-chunk 
         pop NP2  

unify NP with =NP in DP-chunk 
         pop DP2  

unify DP with =DP in S-chunk 
    retrieve VP-chunk 

    push VP-chunk 
      retrieve DP3-chunk 

      push DP3-chunk 

         retrieve NP3-chunk 
         pop NP3  

unify NP with =NP in DP-chunk 
            pop DP3 

unify DP with =DP in VP-chunk 
       retrieve DP4-chunk 

       push DP4-chunk 
          retrieve NP4-chunk 

          pop NP4  

unify NP with =NP in DP-chunk 
            pop DP4 

unify DP with =DP in VP-chunk 
       pop VP 

unify VP with =VP in S-chunk 
      pop S  

unify S with CP-chunk 
       pop CP 

unify CP with VP1-chunk 
       pop VP1 

unify VP with S1-chunk 
       pop S  

retrieve S-chunk 

push S-chunk  

    retrieve DP1-chunk 
    push DP1-chunk  

      retrieve NP1-chunk 

      pop NP1  
     retrieve NP1-chunk 

     pop NP1  

unify NP1 with =NP of DP1 

  pop DP-chunk 

unify DP1 with =DP of S  

  retrieve VP-chunk  

  push VP-chunk 

    retrieve DP-chunk 

    push DP-chunk 
      retrieve NP-chunk 

      pop NP-chunk 

unify NP2 with =NP2 of DP2 

    pop DP-chunk 

unify DP2 with =DP2 of VP 

    retrieve DP-chunk 
    push DP-chunk 

      retrieve NP-chunk  

      pop NP-chunk 

unify NP3 with =NP3 of DP3 

    pop DP-chunk 

unify DP3 with =DP3 of VP 

  pop VP-chunk 

unify VP with =VP of S 

pop S-chunk 

 

  retrieve RelC 

     retrieve RelP  

      pop RelP  

unify RelP with =RelP in RelC  
      retrieve S-gap-chunk 

      push S-gap-chunk 
  retrieve VP2-chunk  

  push VP2-chunk 

    retrieve DP3-chunk 
    push DP3-chunk 

      retrieve NP3-chunk 

      pop NP3-chunk 

unify NP3 with =NP4of DP3 

    pop DP3-chunk 

unify DP3 with =DP3 of VP 
    retrieve DP4-chunk 

    push DP4-chunk 

      retrieve NP4-chunk  
      pop NP4-chunk 

unify NP4 with =NP4 of DP4 

    pop DP4-chunk 

unify DP4 with =DP4 of VP2 

  pop VP2-chunk 

unify VP2 with =VP of S1 

pop S-gap-chunk 

unify S with =S in RelC-chunk 

     retrieve NP2-chunk 
     pop NP2 

unify NP with =NP in RelC-chunk 

pop RelC 

21 rules 40 rules 23 rules 22 rules 

 

What this table should make abundantly clear is the significant difference in the rules necessary 
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for the processing of each of the prime’s structural contexts. The prime occurring in a verb 

complement clauses is associated with 40 rule firings, whereas the primes in the other three 

contexts are associated with approximately 22 rule firings (matrix with adverbial clause: 21; 

matrix with relative clause: 23; embedded in relative clause: 22).  Consider again how utility is 

calculated: 

U = PG – C      Utility 
 

Utility is determined by the probability P that a rule achieves its intended effect and that it leads 

to the successful completion of the goal G minus the cost C associated with firing the rule. As 

the number of rules increases, the probability of success decreases and the cost increases, thereby 

lowering the utility of each rule. For example, cost is calculated by adding the cost of firing the 

particular rule a and the estimated cost of all subsequent rules b.  

 

C = a + b    Associated cost  
 

Assuming that a remains constant (i.e. firing a ‘retrieve VP’ rule always costs the same amount), 

any increase in b leads to lower utility. b increases as the number of rules in the context 

increases. For instance, consider the number of rules associated with the processing of the single-

clause sentence “The duke promised the duchess the rubies” (21 rules) versus the sentence with 

the verb complement clause “The report declared that the duke promised the duchess the rubies” 

(40 rules). If we consider the firing of the first ‘retrieve DP’ rule, there are 20 other firings that 

must occur to process the single-clause sentence, whereas there are 39 that must fire to process 

the verb complement clause sentence. Thus, the firing of the same rule is more costly in the verb 
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complement clause due to the number of other rules that must fire in order to make a 

grammatical sentence. 

 The fact that primes in verb complement clauses have lower utility scores may lead one 

to predict that primes in verb complement clauses always prime less than primes in other 

positions. However, utility is not the only factor affecting priming behavior. Rule strength also 

determines how likely a rule is to be retrieved. At the shorter lag, the production rule strength is 

sufficient to lead to priming for primes in verb complement clauses as found in Experiment 1. 

Priming waned only after a delay, when the activation (hence strength) had decayed and utility 

became the primary decision-making factor. 

 

6.   Conclusion  

In this chapter, I explored the PRICE claim that structural context mediates the effects of 

recency on structural priming. The SAP account claimed that all structural primes should 

demonstrate the same pattern of priming behavior regardless of the structural context in which 

the prime occurred. PRICE predicted differences among the structural contexts. The results from 

Experiments 1 and 2 support PRICE. 

The results from these studies indicate that structural primes in verb complement clauses 

do not lead to stable structural priming over time. Rather, priming disappeared at longer lags. 

PRICE claimed that differences among the different structural contexts are due to the way 

memory represents the application of  production rules. The model of language processing 

presented in Chapter 2 claimed that the argument/adjunct distinction is a crucial factor in 
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determining which structural contexts are relevant. This model of language processing contends 

that the retrieval of production rules depends on the strength and utility of a given rule. 

Determining a rule’s strength depends on both the overall history of use and the recency of use. 

Determining a rule’s utility depends on estimating the probability of success and cost associated 

with the rule. The utility of rules associated with long unification chains is more difficult for the 

processor to assess than it would be if the chain were shorter. This difficulty leads to lower utility 

scores relative to those associated with rules occurring in short unification chains. When a 

particular rule’s strength has waned due to natural activation decay, the effects of lower utility 

scores manifest and weaker structural priming surfaces. That is, the amount of structural priming 

from long unification chains is lower than the amount from short unification chains. We return to 

the effects of production rule strength and utility and their impact on structural priming in 

Chapter 5. 
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Appendix 4A: Experimental items for the structural priming experiments 

 

The materials for the two embedded conditions are given first, starting with the relative clause 

condition and then the verb complement clause condition. This is followed by the two matrix 

clause conditions. All the primes are shown with the double object dative form.  

 

Embedded Primes    

Primes and targets for relative clause condition NP1 NP2 VERB 

The dean spoke with the graduates who baked the professors the cookies.  

Target: The organist gossiped about the neighbor who . . .  

 
Brownies pastor BAKE 

The auditor knew the manager who handed the customer the cash.   

Target: The valet talked with the customer who . . . waiter menu HAND 

 

The neighbors knew the mother who promised the girl the ring.   

Target: The king befriended the lord who . . . rubies duchess PROMISE 

     

The gang paid the inspector who offered the bar owner the bribe.   

Target: The judge called the attorney who . . . thief deal OFFER 

 

The social worker met the tenant who owed the landlord the rent.   

Target: The news quoted the captain who . . . complement lieutenant OWE 

 

The bank called the salesman who sold the couple the Jeep.   

Target: The butcher carpooled with the grocer  

who . . . 
shopper walnuts SELL 

 

The cop talked to the waitress who served the executive the martini.  

Target: The expert interviewed the hostess who . . . quilters pastries SERVE 

 

The psychologist interviewed the child who showed the officer the coloring book. 

Target: The principal confided in the teacher who . . . raters answers SHOW 

 

     

Primes and targets for verb complement clause condition NP1 NP2 VERB 

The letter alleged that the graduates baked the professors the cookies.  

Target: The paper stated that the neighbor . . . brownies pastor BAKE 

 

The report disclosed that the manager handed the customer the cash.  

Target: The film revealed that the customer . . . waiter menus HAND 
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The headline alleged that the mother promised the girl the ring.   

Target: The photograph disclosed that the lord . . . rubies duchess PROMISE 

 

The video revealed that the inspector offered the bar owner the bribe.  

Target: The paper claimed that the attorney . . . thief deal OFFER 

 

The report stated that the tenant owed the landlord the rent.   

Target: The headline revealed that the captain . . . complement lieutenant OWE 

 

The headline declared that the salesman sold the couple the Jeep.  

Target: The paper revealed that the grocer . . . shopper walnuts SELL 

 

The rumors alleged that the waitress served the executive the martini.  

Target: The report claimed that the hostess . . . quilters pastries SERVE 

 

The report stated that the child showed the officer the coloring book.  

Target: The documents alleged that the teacher . . . raters answers SHOW 

 

     

Matrix primes    

Primes and targets for relative clause condition NP1 NP2 VERB 

The mayor who cited the newspaper awarded the fireman the medal.  

Target: The man who sat next to the parents . . . winner trophy AWARD 

 

The pilot who recommended the company bought the flight crew the drinks.  

Target: The sailor who married the teacher . . . children candies BUY 

 

The toddler who kissed the aunt fed the rabbit the carrot.   

Target: The nanny who scolded the visitor . . . twins cake FEED 

 

The clerk who emailed the temp issued the typist the key.   

Target: The trooper who contacted the station . . . ticket driver ISSUE 

 

The swimmer who questioned the coach lent the diver the towel.   

Target: The seamstress who met the groom . . . dress bride LEND 

 

The teenager who saw the teacher passed the student the note.   

Target: The fan who kissed the guitarist . . . drummer cigars PASS 

 

The boy who knew the magician taught the girl the trick.   

Target: The social worker who phoned the activists . . . migrants english TEACH 

 



348 

 

The lifeguard who warned the crowd threw the surfer the life vest.   

Target: The pitcher who loved the fans . . . coach ball THROW 

 

     

Primes and targets for verb  complement clause condition NP1 NP2 VERB 

As the newspaper claimed, the mayor awarded the fireman the medal.  

Target: As the rumors alleged, the man . . . winner trophy AWARD 

 

As the paper reported, the pilot bought the flight crew the drinks.   

Target: As the video revealed, the sailor . . . children candies BUY 

 

As the report claimed, the toddler fed the rabbit the carrot.   

Target: As the document alleged, the nanny . . . twins cake FEED 

 

As the film revealed, the temp issued the typist the key.   

Target: As the video alleged,  the trooper . . . ticket driver ISSUE 

 

As the photograph revealed, the swimmer lent the diver the towel.   

Target: As the program claimed, the seamstress . . . dress bride LEND 

 

As the rumors claimed, the teenager passed the student the note.   

Target: As the report declared, the fan . . . drummer cigars PASS 

 

As the documents revealed, the boy taught the girl the trick.   

Target: As the paper stated, the social worker . . . migrants english TEACH 

 

As the program alleged, the lifeguard threw the surfer the life vest.   

Target: As the headline disclosed, the pitcher . . . coach ball THROW 
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Appendix 4B: Filler items for the structural priming experiments 

 

Two-place predicates full and fragment sentences Word 1 Word 2 Verb 

The careless delivery boy put the pizza in the trunk. 

The flight attendant put the coat in the compartment. 

The senior librarian put the book on the shelf. 

The considerate biologist put the sample in the refrigerator. 

The siblings put their parents’ anniversary picture on the refrigerator. 

The florist placed the lilies in the bottle. 

The cautious dentist placed the tools on the tray. 

The overly sentimental aunt placed the card on the mantel. 

The junior high lunch lady placed the mashed potatoes on the student’s tray. 

The guitarist and the pianist placed their differences aside. 

The best friends each put the others’ picture in a frame. 

The law student . . . article folder PUT 

The trainer . . . weights rack PUT 

The overwhelmed and underpaid secretary . . . document shredder PUT 

The mime and street musicians both . . . names list PUT 

Both the acrobat and the clown put . . . makeup faces PUT 

The travel agent . . . ticket envelope PLACE 

The well-liked mailman happily . . . package doorstep PLACE 

The conservative satirical columnist . . . receipt purse PLACE 

The insurance adjustor accidentally . . . claim briefcase PLACE 

The happy but careless newlyweds . . . presents closet PLACE 

The stressed surgeon intentionally . . . x-ray file PLACE 

Where-clause full and fragment sentences 

The repairman fixed the hole where the crack was. 

The teenager parked where the cool kids smoked. 

The girl looked where the kittens were. 

The boys visited the zoo where the giraffes live. 

The children yelled up the tree where the boy waited. 

The cowboy saw where the steer waited. 

The man knew where the mouse hid. 

The teacher placed the answer sheet where the quiz was. 

The girl looked where the doll and the lamp stood. 

The maid discovered where the children hid. 

The second grader found where the cookies were kept. 

The children and parents all knew where . . . babysitter magazine HIDE 

The gardener dug where . . . bulbs spring GROW 
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The ranger placed the sign where . . . hunters deer GATHER 

The chef chopped the vegetables where . . . spice jars BE 

The couple walked toward the stand where . . . driver cab WAIT 

The divorcee and the lawyer both knew where . . . corporate investments BE 

The author wrote where . . . poet sister DIE 

The ballerina practiced where . . . musicians blues MEET 

The reporter ran to where . . . accident train HAPPEN 

The artist remembered where . . . collector painting HANG 

The acrobat walked where . . . rope taunt BE 

Finite clause complement full and fragment 

sentences 

The expert certified that the broken antique was genuine. 

The marketing students discovered that the new ad campaign was plagiarized. 

The review board confirmed that the results were valid. 

Even the NRA considers that legalizing grenades is dangerous. 

The physician diagnosed that the soprano’s tumor was benign. 

The woman discovered that her fiancée was completely untrustworthy. 

The professor expected that the worst student was an athlete. 

The young couple felt that the condominium was too small for the family. 

The suspicious husband guessed that his wife’s excuse was false. 

The plumber hypothesized that the problem was internal. 

The representative imagined that the other party’s candidate was an idiot. 

The expert affirmed . . . document forged BE 

The critic confessed . . . favorite jazz BE 

The airline employee confirmed . . . jet late BE 

The dog show judge considered . . . beagles superior BE 

The visiting professor conceded. . research questionable BE 

The administrator discovered . . . manager incompetent BE 

The OBGYN acknowledged . . . couple pregnant BE 

The UN translator felt . . . diplomat fair BE 

The uncle guessed . . . nephew honest BE 

The humanitarian organization hypothesized . . . reporter helpful BE 

The whistle blower foresaw . . . inspector corrupt BE 

Object-control full and fragment sentences 

The father persuaded the girl to be a careful skier. 

The woman forced her husband to be neater around the house. 

The librarian somehow convinced the researcher to be quiet. 

The boss encouraged his servant to be faster. 

The child convinced the clown to make a balloon dog. 
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The babysitter encouraged the employer to be a better parent. 

The son allowed the father to be the teacher for a day. 

The roommates encouraged each other to be more studious. 

The dog begged the owner to be more generous with the food. 

The crew persuaded the captain to stop drinking whiskey. 

The company forced the CEO to resign his post. 

The nun allowed . . . priest late BE 

The activist encouraged . . . community proactive BE 

The neighbor begged . . . gardener Early BE 

The new employee begged . . . mentors available BE 

The student asked . . . tutor specific BE 

The reporter persuaded . . . informant honest BE 

The sergeant encouraged . . . recruits active BE 

The new rules forced . . . applicants competitive BE 

The calm friend convinced . . . president patient BE 

The tyrant forced . . . editor flattering BE 

The fraternity’s president allowed . . . members diverse BE 
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Appendix 4C: Instructions used in the structural priming experiment 1 and 2  

Welcome and thank you for participating.  

 

In the first phase of this study, you will be asked to do two tasks.  In one task, you will be asked 

to read sentences out loud, while in another task, you will be asked to finish incomplete 

sentences using a set of specific words.  Following these tasks, you will be shown another series 

of sentences, and you will be asked whether you remember seeing them or not.  

 

For the first phase, you will see some slides with the word “READ” at the top.  When you see 

this prompt, you should first read the sentence presented on the screen silently to yourself, and 

then read it out loud.  Be sure to read the sentence carefully and say it aloud clearly and 

accurately.  When you are done, press the space bar for the next slide.   

 

On other slides, you will see the word “COMPLETE”.  Underneath this word will be an 

incomplete sentence.  

 

Read the incomplete sentence silently to yourself.  Then, press the SPACE BAR, and 3 words 

will appear.  

 

The bottom word, in all CAPS, will be a verb, and the other two words will be nouns or 

adjectives.  These are the words you should use to complete the sentence. 

 

Read the 3 words silently, and then read the sentence fragment aloud and finish it using the 

additional words. You may need to change the form of the verb or the order of the words, or add 

prepositions or articles (“a”/”the”) in order to make a complete sentence.  Consider the following 

example: 

 

 

“Yesterday, Robert . . .” 

 

cafeteria 

kiwi 

EAT 

 

 

POSSIBLE RESPONSE:  

“Yesterday, Robert ate a kiwi in the cafeteria.” 

 

As you can see in this example, the verb “EAT” needed to be in the past tense “ATE”, and both 

of the nouns needed an article, and “cafeteria” needed a preposition to make sense. 
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Now you will try a few practice slides. 

 

Remember to just read aloud the “READ” slides as accurately as possible.  

 

And for the “COMPLETE” slides, you may add words as necessary, but avoid adding too many.  

 

The most important thing is that YOU MUST USE ALL THE WORDS that appear.  

 

Try to produce your responses as quickly as possible, but do not spend too much time with any 

single response. 

 

 

Practice 1: 
READ 

Looking around for thirty minutes, the lab tech searched the cafeteria for his friends. 

 

Practice 2: 
READ 

The philosopher whose book was recently published danced with the sailor all night. 

 

Practice 3: 
COMPLETE 

The musician whose guitar is on auction. . . 

 hall 

   waltz 

PERFORM 

 

Practice 4: 
READ 

Hoping to avoid the police, the smugglers jumped over the fence into the backyard. 

 

Practice 5: 
COMPLETE 

Rubbing her forehead, the artist . . . 

canvas 

picture 

PAINT 

 

Practice 6: 
READ 

The sleeping child was woken up by the loud music. 
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Practice 7: 
READ 

Knowing that it would cost him his job, the whistle-blower confronted his boss. 

 

Practice 8: 
COMPLETE 

The old church tower was . . . 

   bolt 

lightning 

 STRIKE 

 

Practice 9: 
COMPLETE 

The ballerina knew the dancer whose . . . 

    friend 

      girl 

GRADUATE 

 

 

Now you are ready for the experiment.  

 

As you move through the experiment, remember to read the “READ” slides carefully and to give 

your first response to the “COMPLETE” slides smoothly. 

 

When you are done with this phase, you will be given a memory test to see if you recognize any 

of the sentences from the experiment.  Therefore, you should read them carefully. 

 

If you have any questions, please ask the experimenter now. Otherwise, proceed…. 
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Appendix 4D: Regression models  

 

1. Experiment 1: Short Lag of 1 

 

1.1   Relative clause condition (RC) 

 

A) RC main effects at lag of 1: Parameter values for the fixed effect prime and position in a 

generalized linear mixed model logistic regression of DO/PD responses, in log odds, and associated 

standard errors, z-scores, and probabilities. PD completions were compared against the baselines, DO 

completions were compared to PD baselines, and matrix clause primes were compared to embedded 

clause primes.  

Random Effects 

 Standard deviation 

Participants (90) 0.95 

Verb (16) 0.70 

 

Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.08 0.28 0.27 0.78 

Baseline & PD 0.06 0.17 0.36 0.72 

PD & DO -0.22 0.11 -2.00 0.05* 

Position -0.10 0.37 -0.28 0.78 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

B) RC interaction at lag of 1: Parameter values for the fixed effect prime and position and their 

interaction in a generalized linear mixed model logistic regression of DO/PD responses, in log odds, 

and associated standard errors, z-scores, and probabilities. PD completions were compared against 

the baselines, DO completions were compared to PD baselines, and matrix clause primes were 

compared to embedded clause primes.   

 

Random Effects 

 Standard deviation 

Participants (90) 0.97 

Verb (16) 0.70 
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       Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.08 0.28 0.27 0.78 

Baseline & PD 0.05 0.18 0.27 0.79 

PD & DO -0.18 0.18 -1.00 0.32 

Position -0.10 0.37 -0.28 0.78 

Baseline & PD*Position 0.02 0.17 0.12 0.91 

PD & DO*Position -0.08 0.30 -0.26 0.79 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

C) Model check of main effects and interaction for RC at lag of 1: There was no significant 

difference between the main effects and interaction model χ²(2, N = 90) = 0.07, p = 0.97. 

 

 

1.2 Verb complement clause condition (VC) 

 

A) VC main effects at lag of 1: Parameter values for the fixed effect prime and position in a generalized 

linear mixed model logistic regression of DO/PD responses, in log odds, and associated standard 

errors, z-scores, and probabilities. PD completions were compared against the baselines, DO 

completions were compared to PD baselines, and matrix clause primes were compared to embedded 

clause primes.   

 

Random Effects 

 Standard deviation 

Participants (90) 0.94 

Verb (16) 0.64 

 

      Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.00 0.26 0.00 0.99 

Baseline & PD 0.18 0.17 1.08 0.28 

PD & DO -0.43 0.11 -3.82 0.001*** 

Position -0.20 0.34 -0.57 0.57 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

B) VC interaction at lag of 1: Parameter values for the fixed effect prime and position and their 

interaction in a generalized linear mixed model logistic regression of DO/PD responses, in log odds, 

and associated standard errors, z-scores, and probabilities. PD completions were compared against the 

baselines, DO completions were compared to PD baselines, and matrix clause primes were compared 

to embedded clause primes.   
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Random Effects 

 Standard deviation 

Participants (90) 0.94 

Verb (16) 0.64 

 

       Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.00 0.26 0.00 0.99 

Baseline & PD 0.17 0.18 0.93 0.35 

PD & DO -0.48 0.19 -2.58 0.01** 

Position -0.19 0.34 -0.56 0.57 

Baseline & PD*Position 0.02 0.17 0.10 0.92 

PD & DO*Position 0.10 0.30 0.33 0.75 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

C) Model check of main effects and interaction for VC at lag of 1: There was no significant 

difference between the main effects and interaction model χ²(2, N = 90) = 0.15, p = 0.93. 

 

1.3 Comparing the relative clause and the verb complement clause condition at lag 1 

 

A) Interaction between Condition (RC/VC) and Position at lag of 1: Parameter values for the fixed 

effect prime and position in a generalized linear mixed model logistic regression of DO/PD responses, 

in log odds, and associated standard errors, z-scores, and probabilities. PD completions were 

compared against the baselines, DO completions were compared to PD baselines, matrix clause 

primes were compared to embedded clause primes, and the verb complement clause version was 

compared to the relative clause version. 

 

Random Effects 

 Standard deviation 

Participants (180) 0.95 

Verb (16) 0.66 

 

       Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.00 0.27 -0.01 0.99 

Baseline & PD 0.12 0.12 1.02 0.31 

PD & DO -0.32 0.08 -4.11 0.001*** 

Position -0.21 0.35 -0.59 0.56 

Condition 0.08 0.18 0.44 0.66 

Position*Condition 0.11 0.17 0.67 0.51 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
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B) All possible interactions among condition (RC/VC) and position at lag of 1: Parameter values for 

the fixed effect prime and position in a generalized linear mixed model logistic regression of DO/PD 

responses, in log odds, and associated standard errors, z-scores, and probabilities. PD completions 

were compared against the baselines, DO completions were compared to PD baselines, matrix clause 

primes were compared to embedded clause primes, and the verb complement clause version was 

compared to the relative clause version. 

 

       Random Effects 

 Standard deviation 

Participants (180) 0.95 

Verb (16) 0.66 

 

   

       Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.00 0.27 -0.01 0.99 

Baseline & PD 0.17 0.18 0.94 0.35 

PD & DO -0.48 0.18 -2.59 0.01** 

Position -0.21 0.35 -0.58 0.56 

Condition 0.08 0.18 0.44 0.66 

Baseline & PD*Position 0.02 0.17 0.11 0.92 

PD & DO*Position 0.10 0.30 0.33 0.74 

Baseline & PD*Condition -0.12 0.26 -0.48 0.63 

PD & DO*Condition 0.29 0.26 1.13 0.26 

Position*Condition 0.11 0.17 0.67 0.51 

Baseline & PD* 

Position*Condition 0.00 0.24 0.001 1.00 

PD & DO*Position*Condition -0.17 0.42 -0.41 0.68 
      Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

C) Model check of position and version interaction and all the possible interactions models for RC 

and VC lag 1: There was no significant difference between the two models χ²(6, N = 180) = 2.31, p = 

0.89. 

 

 

2. Experiment 2: Long Lag of 3 
 

2.1 Relative clause condition lag 3 
 

A) RC main effects at lag of 3: Parameter values for the fixed effect prime and position in a generalized 

linear mixed model logistic regression of DO/PD responses, in log odds, and associated standard 

errors, z-scores, and probabilities. PD completions were compared against the baselines, DO 
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completions were compared to PD baselines, and matrix clause primes were compared to embedded 

clause primes.   

 

Random Effects 

 Standard deviation 

Participants (90) 1.06 

Verb (16) 0.71 

   

 

       Fixed Effects 

 Estimate Standard Error z P-value 

Intercept -0.14 0.29 -0.47 0.64 

Baseline & PD 0.29 0.18 1.63 0.10 

PD & DO -0.54 0.12 -4.47 0.001*** 

Position -0.14 0.38 -0.37 0.72 
          Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

B) RC interaction at lag of 3: Parameter values for the fixed effect prime and position and their 

interaction in a generalized linear mixed model logistic regression of DO/PD responses, in log odds, 

and associated standard errors, z-scores, and probabilities. PD completions were compared against the 

baselines, DO completions were compared to PD baselines, and matrix clause primes were compared 

to embedded clause primes.   

 

Random Effects 

 Standard deviation 

Participants (60) 1.15 

Verb (16) 0.70 

 

       Fixed Effects 

  Estimate Standard Error z P-value 

Intercept -0.13 0.29 -0.47 0.64 

Baseline & PD 0.27 0.20 1.34 0.18 

PD & DO -0.51 0.20 -2.55 0.01* 

Position -0.14 0.38 -0.37 0.71 

Baseline & 

PD*Position 0.07 0.17 0.38 -0.71 

PD & DO*Position -0.05 0.33 -0.15 0.88 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

C) Model check of main effects and interaction for RC at lag of 3: There was no significant 

difference between the main effects and interaction model χ²(2, N = 90) = 0.14, p = 0.93. 

 

2.2 Relative clause condition at lag 1 and lag 3 
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A) RC main effects at lag of 1 and 3: Parameter values for the fixed effect prime and position in a 

generalized linear mixed model logistic regression of DO/PD responses, in log odds, and associated 

standard errors, z-scores, and probabilities. PD completions were compared against the baselines, DO 

completions were compared to PD baselines, and matrix clause primes were compared to embedded 

clause primes, and lag 3 results were compared to lag 1.  

 

Random Effects 

 Standard deviation 

Participants (120) 1.07 

Verb (16) 0.72 

 

       Fixed Effects 

 Estimate Standard Error z p-value 

Intercept -0.04 0.36 -0.14 0.89 

Prime 0.58 0.11 5.38 0.001*** 

Position -0.14 0.37 -0.38 0.70 

Lag -0.17 0.11 -1.56 0.12 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

B) RC interaction of Position*Lag at lag of 1 and 3: Parameter values for the fixed effect prime and 

position in a generalized linear mixed model logistic regression of DO/PD responses, in log odds, and 

associated standard errors, z-scores, and probabilities. PD completions were compared to DO 

baselines, and matrix clause primes were compared to embedded clause primes, and lag 3 results were 

compared to lag 1.  

 

Random Effects 

 Standard deviation 

Participants (120) 1.07 

Verb (16) 0.72 

 

      Fixed Effects 

 Estimate Standard Error z p-value 

Intercept -0.08 0.37 -0.22 -0.82 

Prime 0.59 0.11 5.37 0.001*** 

Position -0.07 0.43 -0.16 0.87 

Lag -0.16 0.12 -1.28 0.20 

Position*Lag -0.04 0.11 -0.34 0.73 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

C) Model check for RC lag 1 and lag 3 main effects and Position*Lag interaction: There was no 

significant difference between the main effects and interaction model χ²(1, N = 120) = 0.12, p = 0.74. 

 

D) RC all possible interactions at lag of 1 and 3: Parameter values for the fixed effect prime and 

position in a generalized linear mixed model logistic regression of DO/PD responses, in log odds, and 

associated standard errors, z-scores, and probabilities. PD completions were compared to DO 
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baselines, and matrix clause primes were compared to embedded clause primes, and lag 3 results were 

compared to lag 1.  

 

Random Effects 

Standard Deviation 

Participant (120) 1.07 

Verb (16) 0.72 

 

 

Fixed Effects 

  Estimate Standard Error z p-value 

Intercept 0.15 0.46 0.32 0.75 

Prime 0.12 0.55 0.21 0.84 

Position -0.16 0.66 -0.24 0.81 

Lag -0.27 0.18 -1.52 0.13 

Prime*Position 0.18 1.00 0.18 0.86 

Prime*Lag 0.22 0.25 0.88 0.38 

Position*Lag -0.02 0.25 -0.04 0.97 

Prime*Position*Lag -0.05 0.45 -0.12 0.91 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

E) Model check for RC lag 1 and lag 3 main effects and full  interaction: There was no significant 

difference between the main effects and interaction model χ²(4, N = 120) = 3.10, p = 0.54. 

 

 

2.3 Verb clause version lag 3 
 

A) VC main effects at lag of 3: Parameter values for the fixed effect prime and position in a generalized 

linear mixed model logistic regression of DO/PD responses, in log odds, and associated standard 

errors, z-scores, and probabilities. PD completions were compared against the baselines, DO 

completions were compared to PD baselines, and matrix clause primes were compared to embedded 

clause primes.  

 

Random Effects 

 Standard deviation 

Participants (90) 0.85 

Verb (16) 0.68 
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       Fixed Effects 

 Estimate Standard Error z P-value 

Intercept 0.25 0.30 0.94 0.35 

Baseline & PD -0.01 0.15 -0.09 0.93 

PD & DO -0.11 0.11 -1.05 0.29 

Position -0.37 0.36 -1.02 0.31 
          Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

B) VC interaction at lag of 3: Parameter values for the fixed effect prime and position and their 

interaction in a generalized linear mixed model logistic regression of DO/PD responses, in log odds, 

and associated standard errors, z-scores, and probabilities. PD completions were compared against the 

baselines, DO completions were compared to PD baselines, and matrix clause primes were compared 

to embedded clause primes.  

 

Random Effects 

 Standard deviation 

Participants (90) 0.85 

Verb (16) 0.68 

 

       Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.25 0.27 0.94 0.35 

Baseline & PD -0.08 0.17 -0.47 0.64 

PD & DO 0.22 0.17 1.30 0.19 

Position -0.36 0.36 -1.00 -0.32 

Baseline & 

PD*Position 0.14 0.17 0.81 0.42 

PD & DO*Position -0.68 0.27 -2.51 0.01* 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

 

C) Model check for VC main effects and interaction at lag of 3: There was a significant difference 

between the main effects and interaction model χ²(2, N = 90) = 6.02, p < 0.05, difference in log 

likelihood = 3.01. 

  

2.4 Verb complement clause version at lag 1 and lag 3 
 

A) VC lag 1 and lag 3 main effects: Parameter values for the fixed effect prime and position in a 

generalized linear mixed model logistic regression of DO/PD responses, in log odds, and associated 

standard errors, z-scores, and probabilities. PD completions were compared against the baselines, DO 

completions were compared to PD baselines, and matrix clause primes were compared to embedded 

clause primes, and lag 3 results were compared to lag 1. 
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Random Effects 

Groups Standard Deviation 

Participant (120) 0.85 

Verb (16) 0.65 

 

 

Fixed Effects 

  Estimate Standard Error z p-value 

Intercept -0.44 0.32 -1.40 0.16 

Position 0.47 0.11 4.49 0.001*** 

Prime  -0.31 0.34 -0.91 0.36 

Lag 0.15 0.09 1.62 0.11 

     Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

B) VC lag 1 and lag 3 Position*Lag interaction: Parameter values for the fixed effect prime and 

position in a generalized linear mixed model logistic regression of DO/PD responses, in log odds, and 

associated standard errors, z-scores, and probabilities. PD completions were compared against the 

baselines, DO completions were compared to PD baselines, and matrix clause primes were compared 

to embedded clause primes, and lag 3 results were compared to lag 1. 

 

Random Effects 

Groups Standard Deviation 

Participant (120) 0.88 

Verb (16) 0.65 

 

Fixed Effects 

  Estimate Standard Error z p-value 

Intercept -0.55 0.33 -1.67 0.10 

Prime 0.47 0.11 4.48 0.001*** 

Position  -0.07 -0.40 -0.18 0.86 

Lag 0.21 0.11 1.96 0.05. 

Position*Lag -0.12 0.11 -1.13 0.26 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

C) Model check for RC lag 1 and lag 3 main effects and Position*Lag interaction: There was no 

significant difference between the main effects and interaction model χ²(1, N = 120) = 1.21 p = 0.27. 

 

D) VC lag 1 and lag 3 Prime*Position*Lag interactions: Parameter values for the fixed effect prime 

and position in a generalized linear mixed model logistic regression of DO/PD responses, in log odds, 

and associated standard errors, z-scores, and probabilities. PD completions were compared against the 
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baselines, DO completions were compared to PD baselines, and matrix clause primes were compared 

to embedded clause primes, and lag 3 results were compared to lag 1. 

Random Effects 

Groups Standard Deviation 

Participant (120) 0.86 

Verb (16) 0.65 

 

 

      Fixed Effects  

 Estimate Standard Error z p-value 

Intercept -1.04 0.40 -2.58 0.01** 

PD Prime 1.44 0.47 3.08 0.001** 

Position 0.45 0.58 -0.79 0.43 

Lag 0.51 0.14 3.42 0.001*** 

Prime*Position -1.04 0.82 -1.27 0.21 

Prime* Lag -0.60 0.21 -2.86 0.00** 

Position*Lag -0.50 0.21 -2.33 0.02* 

Prime*Position*Lag 0.75 0.37 2.05 0.04 

      Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1  

 

E) Model check for VC lag 1 and lag 3 main effects and all possible interactions: There was no 

significant difference between the main effects and interaction model χ²(4, N = 120) = 11.33, p = 

0.02, difference in log odds is 5.6. 

 

 

2.5 Verb complement clause version at lag 1 and lag 3 with DO primes only 
 

A) Interaction between Position and Lag for DO primes only: Parameter values for the fixed effect 

prime and position in a generalized linear mixed model logistic regression of DO/PD responses, in 

log odds, and associated standard errors, z-scores, and probabilities. Matrix clause primes were 

compared to embedded clause primes, and lag 1 was compared to lag 2. 

 

       Random Effects 

 Standard deviation 

Participants (120) 0.95 

Verb (16) 0.56 

 

       Fixed Effects 

  Estimate Standard Error z P-value 

Intercept -0.96 0.41 -2.32 0.02* 

Position 0.35 0.58 0.60 0.55 

Lag 0.47 0.16 2.89 0.01** 

Position*Lag -0.46 0.23 -2.00 0.05* 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
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2.6 Relative clause and verb complement clause versions at lag 3 
 

A) Interaction between Condition (RC/VC) and Position at lag of 3: Parameter values for the fixed 

effect prime and position in a generalized linear mixed model logistic regression of DO/PD responses, 

in log odds, and associated standard errors, z-scores, and probabilities. PD completions were 

compared against the baselines, DO completions were compared to PD baselines, matrix clause 

primes were compared to embedded clause primes, and the verb complement clause version was 

compared to the relative clause version. 

 

       Random Effects 

 Standard deviation 

Participants (180) 0.95 

Verb (16) 0.68 

 

 

       Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.26 0.28 0.94 0.35 

Baseline & PD 0.13 0.12 1.14 0.25 

PD & DO -0.32 0.08 -3.97 0.001*** 

Position -0.35 0.36 -0.97 0.33 

Condition -0.38 0.19 -2.05 0.04* 

Position*Condition 0.21 0.17 1.20 0.23 
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

  

 

B) All possible interactions among condition (RC/VC) and position at lag of 3: Parameter values for 

the fixed effect prime and position in a generalized linear mixed model logistic regression of DO/PD 

responses, in log odds, and associated standard errors, z-scores, and probabilities. PD completions 

were compared against the baselines, DO completions were compared to PD baselines, matrix clause 

primes were compared to embedded clause primes, and the verb complement clause version was 

compared to the relative clause version. 

 

 

       Random Effects 

 Standard deviation 

Participants (180) 0.93 

Verb (16) 0.69 

 

        

  



366 

 

Fixed Effects 

  Estimate Standard Error z P-value 

Intercept 0.26 0.28 0.94 0.35 

Baseline & PD -0.08 0.18 -0.45 0.65 

PD & DO 0.23 0.18 1.24 0.22 

Position -0.35 0.37 -0.96 0.34 

Condition -0.38 0.18 -2.08 0.04* 

Baseline & PD*Position 0.14 0.17 0.81 0.42 

PD & DO*Position -0.70 0.30 -2.36 0.02* 

Baseline & PD*Condition 0.34 0.26 1.30 0.19 

PD & DO*Condition -0.73 0.26 -2.79 0.01** 

Position*Condition 0.21 0.17 1.18 0.24 

Baseline & PD* 

Position*Condition -0.08 0.24 -0.32 0.75 

PD & DO*Position*Condition 0.66 0.42 1.56 0.12 
       Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 

 

 

C) Model check for RC and VC at lag 3 single interaction and all possible interactions model: 

There was no significant difference between the main effects and interaction model χ²(6, N = 180) = 

12.53, p = 0.051. 

 

2.7 Comparing RC and VC at lag of 1 and 3 (just the PD and DO completions, no baseline) 

 

A) Comparison of selected models for the compiled data organized by degrees of freedom and log 

likelihood 

 Model Df AIC BIC Loglik 

a)  Main effects 7 4360.9 4404.1 2173.5 

b) Interaction Lag*Condition 8 4359.0 4408.4 2171.5 

c) Interaction Position*Condition 8 4362.0 4411.4 2173.0 

d) Interaction Prime*Position 8 4362.2 4411.5 2173.1 

e) Interaction Lag*Position 8 4362.5 4411.8 2173.2 

f) Interaction Lag*Prime 8 4362.9 4412.3 2173.4 

g) Interaction Prime*Condition 8 4362.9 4412.2 2173.4 

h) Interaction Condition(Prime, Position, Lag) 10 4362.1 4423.7 2171.0 

i) Interaction Lag(Prime, Position, Condition) 10 4362.5 4424.2 2171.3 

j) Interaction Prime*Position*Condition 11 4366.8 4434.7 2172.4 

k) Interaction Lag*Condition(Prime, Position) 14 4364.5 4450.9 2168.3 

l) All possible interactions 18 4368.9 4479.9 2166.4 

 

B) The regression results for the models organized by degrees of freedom and log likelihood 

 

a) Main Effects 
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Random Effects 

  Standard Deviation 

Participants (240)  0.98 

Verb (16)  0.67 

Fixed Effects 

  Estimate Standard Error z p-value 

Intercept -0.19 0.30 -0.64 0.53 

Prime 0.54 0.08 7.19 0.00 

Position -0.21 0.35 -0.60 0.55 

Condition -0.08 0.15 -0.57 0.57 

Lag -0.03 0.07 -0.38 0.71 

b) Interaction Condition*Lag Random Effects 

  Standard Deviation 

Participants (240) 0.97 

Verb (16) 0.67 

Fixed Effects 

  Estimate Standard Error Z p-value 

Intercept -0.48 0.34 -1.44 0.15 

Prime 0.54 0.08 7.19 0.00 

Position -0.21 0.35 -0.60 0.55 

Condition 0.50 0.33 1.53 0.13 

Lag 0.12 0.10 1.14 0.25 

Condition*Lag -0.29 0.15 -2.00 0.05 

c) Interaction Condition*Position Random Effects 

Random Effects 

  Standard Deviation 

Participants (240) 0.98 

Verb (16) 0.67 

Fixed Effects 

  Estimate Error Z p-value 

Intercept -0.16 0.31 -0.52 0.60 

Lag -0.03 0.07 -0.38 0.71 

Prime 0.54 0.08 7.19 0.00 

Position  -0.28 0.35 -0.80 0.43 

Condition -0.15 0.16 -0.93 0.35 

Condition*Position 0.15 0.15 0.97 0.33 

d) Interaction Prime*Position 

Random Effects 
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  Standard Deviation 

Participants (240) 0.98 

Verb (16) 0.67 

Fixed Effects 

  Estimate Error z p-value 

Intercept -0.13 0.31 -0.42 0.68 

Prime 0.42 0.16 2.57 0.01 

Position  -0.34 0.38 -0.89 0.37 

Condition -0.08 0.15 -0.57 0.57 

Lag -0.03 0.07 -0.38 0.71 

Prime*Position 0.26 0.29 0.87 0.39 

e) Interaction Lag*Position 

Random Effects 

  Standard Deviation 

Participants (240) 0.98 

Verb (16) 0.67 

 

Fixed Effects 

  Estimate Standard Error z p-value 

Intercept -0.24 0.31 -0.78 0.44 

Prime 0.54 0.08 7.19 0.00 

Condition -0.08 0.15 -0.57 0.57 

Position -0.10 0.38 -0.28 0.78 

Lag 0.00 0.08 -0.04 0.97 

Lag*Position -0.05 0.08 -0.70 0.49 

f) Interaction Prime*Lag 

Random Effects 

  Standard Deviation 

Participants (240) 0.98 

Verb (16) 0.67 

Fixed Effects 

  Estimate Standard Error z p-value 

Intercept -0.18 0.31 -0.57 0.57 

Condition -0.08 0.15 -0.57 0.57 

Position -0.21 0.35 -0.60 0.55 

Prime 0.52 0.17 3.08 0.00 

Lag -0.03 0.08 -0.42 0.67 

Prime*Lag 0.01 0.08 0.18 0.86 
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g) Interaction Prime*Condition 

Random Effects 

  Standard Deviation 

Participants (240) 0.98 

Verb (16) 0.67 

Fixed Effects 

  Estimate Error z p-value 

Intercept -0.18 0.31 -0.60 0.55 

Lag -0.03 0.07 -0.38 0.70 

Position -0.21 0.35 -0.60 0.55 

Prime  0.52 0.11 4.92 0.00 

Condition -0.10 0.17 -0.63 0.53 

Prime*Condition 0.04 0.15 0.26 0.80 

h) Interaction Condition(Prime, Position, Lag) 

Random Effects 

  Standard Deviation 

Participants (240) 0.97 

Verb (16) 0.67 

 

Fixed Effects 

  Estimate Error z p-value 

Intercept -0.44 0.34 -1.30 0.19 

Lag  0.12 0.10 1.14 0.25 

Prime  0.52 0.11 4.91 0.00 

Position  -0.28 0.35 -0.79 0.43 

Condition 0.41 0.34 1.20 0.23 

Lag*Condition -0.29 0.15 -2.00 0.05 

Prime*Condition 0.04 0.15 0.26 0.80 

Position*Condition 0.15 0.15 0.96 0.34 

 

i) Interaction Lag (Condition, Prime, Position) 

Random Effects 

  Standard Deviation 

Participants (240) 0.97 

Verb (16) 0.67 
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Fixed Effects 

  Estimate Standard Error z p-value 

Intercept -0.52 0.35 -1.47 0.14 

Condition 0.50 0.33 1.53 0.13 

Position -0.11 0.38 -0.28 0.78 

Prime 0.52 0.17 3.07 0.00 

Lag 0.13 0.12 1.17 0.24 

Condition*Lag -0.29 0.15 -2.00 0.05 

Position*Lag -0.05 0.08 -0.68 0.50 

Prime*Lag 0.01 0.08 0.19 0.85 

j) Interaction Prime*Position*Condition 

Random Effects 

  Standard Deviation 

Participants (240) 0.98 

Verb (16) 0.67 

Fixed Effects 

  Estimate Error z p-value 

Intercept -0.04 0.32 -0.13 0.90 

Lag -0.03 0.07 -0.38 0.70 

Condition -0.26 0.23 -1.14 0.25 

Position  -0.50 0.41 -1.22 0.22 

Prime 0.31 0.23 1.34 0.18 

Condition*Position 0.34 0.33 1.01 0.31 

Condition*Prime 0.22 0.33 0.69 0.49 

Position*Prime 0.44 0.42 1.06 0.29 

Condition*Prime*Position -0.38 0.59 -0.64 0.52 

k) Interaction Lag*Condition(Positions, Prime) 

Random Effects 

  Standard Deviation 

Participants (240) 0.97 

Verb (16) 0.67 
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Fixed Effects 

  Estimate Standard Error z p-value 

Intercept -0.65 0.37 -1.77 0.08 

Position -0.17 0.41 -0.40 0.69 

Prime 0.84 0.24 3.53 0.00 

Condition 0.77 0.40 1.93 0.05 

Lag 0.22 0.13 1.77 0.08 

Position*Condition 0.12 0.34 0.36 0.72 

Prime*Condition -0.66 0.34 -1.95 0.05 

Position*Lag -0.06 0.11 -0.54 0.59 

Prime*Lag -0.16 0.11 -1.50 0.13 

Condition*Lag -0.47 0.18 -2.64 0.01 

Position*Condition*Lag 0.01 0.15 0.09 0.93 

Prime*Condition*Lag 0.35 0.15 2.31 0.02 

l) All possible interactions 

Random Effects 

  Standard Deviation 

Participants (240) 0.96 

Verb (16) 0.67 

 

Fixed Effects 

  Estimate Standard Error z p-value 

Intercept -0.87 0.43 -2.00 0.05 

Position 0.27 0.62 0.44 0.66 

Prime 1.27 0.51 2.49 0.01 

Condition 1.02 0.51 2.00 0.05 

Lag 0.39 0.16 2.38 0.02 

Position*Prime -0.88 0.92 -0.96 0.34 

Position*Condition -0.39 0.73 -0.53 0.60 

Prime*Condition -1.15 0.72 -1.60 0.11 

Position*Lag -0.39 0.23 -1.67 0.10 

Prime*Lag -0.48 0.23 -2.11 0.03 

Condition*Lag -0.64 0.23 -2.81 0.01 

Position*Prime*Condition 1.02 1.30 0.78 0.43 

Position*Prime*Lag 0.66 0.41 1.60 0.11 

Position*Condition*Lag 0.36 0.33 1.09 0.27 

Prime*Condition*Lag 0.69 0.32 2.13 0.03 

Position*Prime*Condition*Lag -0.70 0.58 -1.19 0.23 
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Appendix 4E: Diagrams of processing and production rules 

 

  

retrieve S-chunk

push S-chunk 

retrieve DP-chunk

push DP-chunk

retrieve NP-chunk

pop NP-chunk

unify NP1 with =NP of DP1

pop DP-chunk

unify DP1 with =DP of S

retrieve VP-chunk

push VP-chunk

retrieve DP-chunk

push DP-chunk

retrieve NP-chunk

pop NP-chunk

unify NP2 with =NP2 of DP2

pop DP-chunk

unify DP2 with =DP2 of VP

retrieve DP-chunk

push DP-chunk

retrieve NP-chunk

pop NP-chunk

unify NP3 with =NP3 of DP3

pop DP-chunk

unify DP3 with =DP3 of VP

pop VP-chunk

unify VP with =VP of S

pop S-chunk

Chain of production rules & unification operations

process sentence

isa : S

spec : =DP1

comp : =VP

isa : DP1

orth: the

comp : =NP

isa : NP1

orth: duke

isa : VP

orth: promise

comp : =DP2

=DP3/p

isa : DP2

orth: the

comp : = NP2

isa : NP2

spec : duchess

isa : DP3

orth: the

comp : = NP3

isa : NP3

spec : rubies

pop-NP1

pop-NP2

pop-NP3

pop-DP2

pop-DP3

pop-DP1

pop-VP

pop-S

Processing chain for matrix dative clause

SENTENCE: “The duke promised the duchess the rubies.”
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retrieve S-chunk

push S-chunk 

retrieve DP1-chunk

push DP1-chunk 

retrieve NP1-chunk

pop NP1

unify NP with =NP in  DP-chunk

pop DP1

unify DP with =DP in S-chunk

retrieve VP1-chunk

push VP1-chunk 

retrieve CP-chunk

push CP-chunk   

retrieve Comp-chunk

pop Comp-chunk

unify Comp with CP

retrieve S2-chunk

push S2-chunk

retrieve DP1-chunk

push DP1-chunk

retrieve NP1-chunk

pop NP2

unify NP with =NP in DP-chunk

pop DP2

unify DP with =DP in S-chunk

retrieve VP-chunk

push VP-chunk

retrieve DP3-chunk

push DP3-chunk

retrieve NP3-chunk

pop NP3

unify NP with =NP in DP-chunk

pop DP3

unify DP with =DP in VP-chunk

retrieve DP4-chunk

push DP4-chunk

retrieve NP4-chunk

pop NP4

unify NP with =NP in DP-chunk

pop DP4

unify DP with =DP in VP-chunk

pop VP

unify VP with =VP in S-chunk

pop S

unify S with CP-chunk

pop CP

unify CP with VP1-chunk

pop VP1

unify VP with S1-chunk

pop S

Chain of production rules & unification operations

Process sentence

isa : S2

spec : =DP2

comp : =VP

isa : DP2

orth: the

comp : =NP

isa : NP2

orth: duke

isa : VP

orth: promise

comp : =DP3

=DP4/PP

isa : DP3

orth: the

comp : =NP

isa : NP3

spec : duchess

isa : DP4

orth: the

comp : =NP

isa : NP4

spec : rubies

pop-NP2

pop-NP3

pop-NP4

pop-DP3

pop-DP4

pop-DP2

pop-VP2

pop-S2

isa : CP

spec: =Comp

comp : =S2

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : =NP1

isa : NP1

orth: report

isa : VP1

orth: declare

comp : =DP2/CP

pop-DP1

pop-NP1

pop-CP

pop-VP1

pop-S1

Processing chain for a sentence with a dative verb in the internal complement of a verb

SENTENCE: “The report declared that the lord promised the duchess the rubies.”

isa : Comp

orth: that

pop-comp
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Chain of production rules & unification operations

isa : S1

spec : =DP1

comp : =VP

isa : DP1

head: the

comp : =NP

isa : VP2

head: promise

comp : =DP3

=DP4/PP

isa : DP3

head: the

comp : =NP3

isa : NP3

spec : duchess

isa : DP4

head: the

comp : =NP3

isa : NP4

spec : rubies

!pop!-NP3

!pop!-NP4

!pop!-DP3

!pop!-DP4

!pop!-DP

!pop!-VP2

!pop!-S

isa : VP1

head: like

comp : =DP2

Process sentence

isa : DP2

head: the

comp : =NP2

isa : NP2

spec : king

!pop!-NP2
!pop!-DP2

!pop!-VP1

Processing chain for a with dative verb with subject-modifying relative clause 

SENTENCE: “The duke who likes the king promised the duchess the rubies.”

isa : NP1

orth : duke

!pop!- NP1

!pop!-RelC

Process relative clause

isa : RelC 

spec: RelP 

comp : =S-gap

mod : =NP

isa : RelP

orth: whot

!pop!-RelP

isa : S-gap

spec : ___

comp : =VP1

gap : =NP

!pop!-S-gap

retrieve S-chunk

push S-chunk 

retrieve DP1-chunk

push DP1-chunk 

retrieve NP1-chunk

pop NP1

retrieve RelC

retrieve RelP 

pop RelP 

unify RelP with =RelP in RelC 

retrieve S-gap-chunk

push S-gap-chunk

retrieve VP2-chunk

push VP2-chunk   

retrieve DP2-chunk

push DP2-chunk

retrieve NP2-chunk

pop NP2

unify NP with =NP in DP-chunk

pop DP2

unify DP with =DP in VP-chunk

pop VP

unify VP with =VP in S-chunk

pop S

unify S with =S in RelC-chunk

retrieve NP1-chunk

pop NP1

unify NP with =NP in RelC-chunk

pop RelC

send to LTM

retrieve NP1-chunk

pop NP1

unify NP1 with =NP of DP1

pop DP-chunk

unify DP1 with =DP of S

retrieve VP-chunk

push VP-chunk

retrieve DP-chunk

push DP-chunk

retrieve NP-chunk

pop NP-chunk

unify NP2 with =NP2 of DP2

pop DP-chunk

unify DP2 with =DP2 of VP

retrieve DP-chunk

push DP-chunk

retrieve NP-chunk

pop NP-chunk

unify NP3 with =NP3 of DP3

pop DP-chunk

unify DP3 with =DP3 of VP

pop VP-chunk

unify VP with =VP of S

pop S-chunk

unify S with control state
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Chain of production rules & unification operations

isa : S1

spec : =DP1

comp : =VP1

isa : DP1

orth: the

comp : = NP1

isa : NP1

orth: king

!pop!-NP1
!pop!- DP1

isa : VP1

orth: like

comp : =DP2

Process sentence

isa : DP2

orth: the

comp : =NP2

!pop!-DP2

Processing chain for a  sentence with an object-modifying relative clause with a dative verb

!pop!-VP1

!pop!-S1

SENTENCE: “The king likes the duke who promised the duchess the rubies.”

isa : NP2

orth : duke

!pop!- NP2

!pop!-RelC

Process relative clause

isa : RelC 

spec: RelP 

comp : =S-gap

mod : =NP

isa : RelP

orth: whot

!pop!-RelP

isa : S-gap

spec : __

comp : =VP2

gap : =NP

isa : VP2

orth: promise

comp : =DP3

=DP4/PP

isa : DP3

orth: the

comp : =NP3

isa : NP2

orth : duchess

isa : DP4

orth: the

comp : =NP4

isa : NP4

orth : rubies

!pop!-NP3

!pop!-NP4

!pop!-DP3

!pop!-DP4

!pop!-VP2

!pop!-S-gap

retrieve S-chunk

push S-chunk 

retrieve DP1-chunk

push DP1-chunk 

retrieve NP1-chunk

pop NP1

unify NP1 with =NP of DP1

pop DP-chunk

unify DP1 with =DP of S

retrieve VP1-chunk

push VP1-chunk

retrieve DP2-chunk

push DP2-chunk

retrieve NP2-chunk      

pop NP2-chunk   

retrieve RelC

push RelC

retrieve RelP

pop RelP

unify RelP with =Rel P of RelC

retrieve S-gap-chunk

push S-gap-chunk

retrieve VP2-chunk

push VP2-chunk

retrieve DP3-chunk

push DP3-chunk

retrieve NP3-chunk

pop NP3

unify NP3 with =NP of DP-chunk

pop DP3

unify DP with =DP of VP-chunk

retrieve DP4-chunk

push DP4-chunk

retrieve NP4-chunk

pop NP4

unify NP with =NP of DP-chunk

pop DP4

unify DP with =DP of VP-chunk

pop VP2

unify VP with =VP of S-chunk

pop S-gap-chunk

unify S with RelC-chunk

retrieve NP2

pop NP2

unify NP with =NP in RelC-chunk

pop RelC

� send to LTM
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5 CHAPTER 

 

Conclusion 

  Perplexity is the beginning of knowledge. ~ Khalil Gibran  

 

 

We began this dissertation with the observation that linguistic behavior can be affected by two 

factors: recent use and structural context. The amount of time that has passed since a speaker last 

encountered a linguistic form along with the structural context in which the form occurred can 

affect how likely reuse of the form is. In Chapter 1, I proposed RICE:  

Recent Interaction with Context Effect (RICE) 

The effect of a recently-encountered linguistic form on subsequent behavior is 

mediated by the way its structural context was processed. 

 

 From RICE came two basic questions: (1) does structural context affect the retrieval of 

both lexical and structural forms, and (2) what should count as the relevant context for exploring 

these effects? With respect to question (1), the research presented in Chapters 3 and 4 suggests 

that structural context affects the retrieval of both lexical forms and structural patterns. With 

respect to question (2), I claimed that the notion of a unification chain (discussed in detail in 

Chapter 2) can help account for the sensitivity of lexical and structural priming to structural 

context.   

In what follows, I first review the basis of the RICE hypothesis and the basic findings of 

the lexical priming study in Chapter 3 and the structural priming studies in Chapter 4. Following 
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this, I discuss some of the implications and possible limitations of the current studies and suggest 

future avenues of research. The chapter ends with some speculations about RICE and language 

processing. 

 

1.  What we know about RICE 

RICE proposes that the processing of a linguistic form and its structural context affect 

subsequent behavior with the form. The model of language processing presented in Chapter 2 

claims that (i) recently used declarative chunks have higher activation weights and recently used 

production rules have higher strengths, and that (ii) the structural context influences the way 

declarative chunks and production rules are retrieved and integrated, thus affecting the way 

memories for the processing event are represented in long-term memory. This language 

processing model assumes that lexical knowledge and structure-building knowledge are 

represented differently in memory. Lexical knowledge maps onto declarative knowledge 

(modeled here by declarative chunks), and structure-building knowledge maps onto procedural 

knowledge (modeled here by production rules). These two types of knowledge are often 

considered distinct (Anderson 2005, Anderson & Lebiere 1998, Bock 1986b inter alia) and may 

even require the use of different areas of the brain (Ullman 2001; Ullman, Corkin, Coppola, 

Hickok, Growdon, Koroshetz, & Pinker 1997). The priming studies reported in Chapters 3 and 4 

suggest that both the declarative knowledge and the procedural knowledge associated with 

language processing are sensitive to the larger structural contexts in which their associated prime 

forms occur. 
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 In Chapter 3, I presented results from a lexical priming study where response times for 

primed words were slower for primes occurring in the internal complements of nouns 

(henceforth noun complement clauses) as compared to those occurring in matrix clauses, relative 

clauses, and the internal complements of verbs (henceforth verb complement clauses). In Chapter 

4, I presented results from two studies that tested the effects of structural context on structural 

priming at short and long intervals (i.e. with one filler item between the prime and target and 

with three filler items between them). These results also indicate that priming behavior was 

sensitive to the different structural contexts with which the primes were associated.  Primes 

occurring in verb complement clauses did not demonstrate priming at longer intervals (lags), 

unlike those occurring in matrix clauses of sentences with introductory adverbial clauses, matrix 

clauses of sentences with relative clauses, or in relative clauses. At the same time, priming from 

matrix clauses of sentences with relative clauses and from relative clauses themselves increased 

at longer lags. That is, the amount of priming relative to the baseline was significant at the long 

lag but not at the short lag, though there was always a difference between completions following 

PD primes and those following DO primes. The results from the structural priming studies 

indicate that both structural context and recency are relevant for structural priming. Taken 

together, the results from the lexical and structural priming studies support the RICE hypothesis: 

structural context mediates the effects of recent processing.  

The reason structural context mediates priming behavior is that structural context affects 

the features of memory traces for processing events. Structural contexts that include argument 

clauses have more chunks and rules associated with them. For example, in the sentence “The 
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king knew that the duke promised the duchess the rubies,” there is one unification chain 

containing all the chunks and rules associated with the processing of the sentence, and the prime 

is associated with this chain. However, in the sentence “The king knew the duke who promised 

the duchess the rubies,” there are two unification chains: one for processing the matrix clause 

“the king knew the duke” and one for processing the relative clause “who promised the duchess 

the rubies.” The prime is associated with the second chain, which has fewer chunks and rules 

than the unification chain associated with the verb complement clause sentence above. The more 

declarative chunks and production rules associated with the processing of the structural context 

of a prime, the less reliable the priming. After processing a sentence, the processor can access the 

memory traces formed during that processing event. Features of these traces, such as the number 

of production rules fired and declarative chunks utilized, affect how the processor evaluates the 

individual elements within the trace.  For example, in Chapter 2, section 3.3.2, I argued that the 

more declarative chunks associated with the processing of a structural context, the less cognitive 

resources each form that is being processed receives. This, in turn, affects the total activation of a 

prime.
1
 The more chunks that occur in the same structural context as the prime chunk, the less 

activation the prime chunk receives and, hence, the less priming. The presence of numerous 

other chunks leads to interference for locating the prime chunk during subsequent accessing of 

the processing event.   

This ‘interference’ for chunks is similar to what happens with production rules. The 

language processing model in Chapter 2 contends that the more rules that are fired during the 

processing of a given structure, the less likely priming is for a particular rule is. The reason for 

                                                 
1
 This spread of cognitive resources is similar to the Fan Effect (Anderson 1974) discussed in Chapter 2, section 5.2. 
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this is that with each additional rule application, the cost of using a particular rule increases and 

the likelihood of successfully achieving the goal decreases. The higher cost and the decrease in 

possible success lead to lower utility scores for production rules. Consequently, the structural 

primes in some structural contexts affect subsequent behavior less than structural primes 

associated other structural contexts.  

The processing model presented in Chapter 2 claims that differences between structural 

contexts are reflected by differences in unification chains, which are formed as a consequence of 

the goal structures generated during the processing of sentences. The model of processing 

presented in Chapter 2 treats language processing as a series of coordinated goals that involves 

the retrieval and manipulation of chunks and rules. A successful unification of two forms 

constitutes a unification cycle (Chapter 2, section 3.4). When the product of one cycle unifies 

with the next form in the problem state, the two unification cycles form a chain. This chain 

continues to grow until such point as the product of a unification cycle can no longer unify with 

an element in the problem state. At this point, the chain is sent to long-term memory. During 

subsequent processing, the processor accesses these chains, and priming behavior is affected by 

the number of elements (chunks or rules) associated with the chain. 

In Chapter 2, section 3.4, I argue that these chains reflect the argument/adjunct 

distinction. Arguments are required by their selectors, and, as such, an argument is associated 

with the same unification chain as its selector. Adjuncts, on the other hand, are associated with 

independent chains that are associated with the element the adjuncts modify but that are distinct 

from the other chains associated with the processing of the sentence.  
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Previous research in both production and comprehension have found differences between 

the processing of argument and adjunct clauses, in particular noun/verb complement clauses and 

relative clauses (Gayraud & Martinie 2008; Gibson 1998, 2000, 2003; Gibson, Desmet, Grodner, 

Watson & Ko 2005; Grodner & Gibson 2005; Hudgins & Cullinan 1978; Kennison 2002; 

Shaprio, Oster, Garcia, Massey, & Thompson 1992; Tanenhaus, Spivey-Knowlton, Eberhard, & 

Sedivy 1995;  Trueswell, Tanenhaus, & Garnsey 1994; van Gompel, Pickering, & Traxler 2001; 

Watson, Breen, & Gibson 2006; Watson & Gibson 2004). My results indicate that the 

argument/adjunct distinction may also be useful in predicting priming effects.  

 

2. Limitations of lexical and structural priming studies   

The lexical and structural priming studies presented in Chapters 3 and 4 offer support for RICE. 

In what follows, I discuss some of the limitations of those studies and then focus on lingering 

issues that must be addressed by future work.  

2.1 General limitations 

 In each of the lexical and structural priming experiments presented in this dissertation, 

the prime occurred in the same linear position, namely in the final clause of a two clause 

sentence. Furthermore, the primes in these studies were either verbs or VP alternations. In the 

lexical priming study presented in Chapter 3, the target was the same verb in the same form as its 

prime. In the structural priming studies discussed in Chapter 4, the primed alternate was for a 

VP-level alternation (i.e. the dative alternation).  And in all the studies, the primes occurred late 

in the sentence. Future research should manipulate both the linear position of the prime and the 
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prime’s syntactic category.  

To begin with, future work should explore the effects of priming from the first clause of 

two clause sentences or from subject positions of sentences. In the experiments discussed in 

Chapters 3 and 4, the prime occurred late in the sentence, as in the sentences below. 

 

1a) Prime in a noun complement clause at the end of the sentence 

 The king knew the fact that the duke promised the duchess the rubies. 

 

    b) Prime in matrix/second clause of a sentence with adverbial clause 

As the king hoped, the duke promised the duchess the rubies. 

 

                 c) Prime in object-modifying relative clause 
  The king called the duke who promised the duchess the rubies.  

 

In (1a) the prime occurs in a noun complement clause at the end of the sentence. In (1b), it 

occurs in the matrix clause of a sentence with an introductory adverbial clause (“as the king 

hoped”), and in (1c), the prime occurs in an object-modifying relative clause. Future research 

should explore the effects of moving these primes to earlier positions in similar sentence types. 

For example, in (2a), the prime promise occurs in a noun complement clause in subject position. 

In (2b) the prime occurs in the matrix and first clause of a sentence with an adverbial clause. In 

(2c), the prime occurs in a subject-modifying relative clause. 

(2a) Prime in noun complement clause in subject position 

 The fact that the duke promised the duchess the rubies relieved the king. 

 

    b) Prime in matrix and first clause of a sentence with adverbial clause 

 The duke promised the duchess the rubies as the king hoped. 

 

    c) Prime in subject-modifying relative clause 

 The duke who promised the duchess the rubies called the king. 
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The model of language processing presented in Chapter 2 contends that the differences 

we found between primes in the second clauses and predicate positions should be the same as 

what we would find for primes in the first clauses and subject positions. In other words, if we 

found a difference between primes in noun complement clauses (e.g. (1a)) and relative clauses 

(e.g. (1c)) when they occurred in sentence final position, we should also find a difference 

between them when they occur in early in the sentence (as in (2a) and (2c)). At the same time, 

the processing model claims that primes occurring in the same structural context in either the 

first or final clause should demonstrate equal amounts of interference of facilitation in priming 

from the structural context. If recency and structural context contribute to priming independently, 

then we might find a slight difference in priming from elements earlier in the sentence due to 

recency. Once recency has waned and only the long-term effects of priming remain (e.g. after a 

lag of three items for structural priming), then the contributions of structural context on priming 

can be seen. At this point, there should be no difference between primes that occur early in the 

sentence than those that occur late in the sentence if they are associated with the same unification 

chain. The reason is that cognitive resources are shared among all forms of a unification chain. 

Thus, a particular form’s position within the chain is not relevant, only that it is associated with 

the chain is relevant. In other words, priming from noun complement clauses late in the sentence 

(e.g. (1a)) should show the same amount of structural context facilitation (or lack thereof) as 

from noun complements early in the sentence (e.g. 2a)). 

Another factor future experiments should explore is the effects of having a prime in a 

sentence with an argument clause in which the prime does not occur in the argument clause.  
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For example, in Chapter 3, I argued that response times for primes such as promise in (3a) were 

slower than response time for primes such as promise in (3b) because there were more chunks 

associated with the unification chain that resulted from the processing of the noun complement 

clause. In (3a) the forms that were used during the processing of the unification chain associated 

with the noun complement clause are denoted by the brackets. In (3b) the forms that were used 

during the processing of the unification chain associated with the relative clause are denoted by 

the brackets 

. 

 (3a) Verb prime embedded in noun complement clause sentence 

 [The king knew the fact that the duke promised the duchess the rubies.] 

 

    b) Verb prime embedded in object-modifying relative clause 

The king called the [duke who promised the duchess the rubies.]  

 

If the number of chunks in associated with a chain is the factor that affects priming behavior, 

then whether the prime occurs in the noun complement clause, for example, or just in a sentence 

with a noun complement clause should not matter. To illustrate, consider sentences (4a) and (4b). 

 (4a) Prime in a sentence with a noun complement clause sentence 

 [The king knew the fact that the duke promised the duchess the rubies.] 

 

    b) Prime in a sentence with an object-modifying relative clause 

[The king called the duke] who promised the duchess the rubies.  

 

Here, the prime king occurs in a sentence with a noun complement clause (4a) and a sentence 

with an object-modifying clause (4b). In both cases, the prime is in the matrix clause and early in 

the sentence. However, in (4a), the unification chain associated with the prime is much longer 
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(i.e. 13 chunks) than the unification chain associated with the prime in (4b) (i.e. 5 chunks). 

PRICE claims that there should be less priming from (4a) than from (4b) because of the 

differences in the number of chunks associated with the primes’ unification chains just as there 

was less priming from (3a) than from (3b) above. Likewise, as the above example suggests, the 

grammatical category of the prime should not matter. The reason that the grammatical category 

should be irrelevant is that within the model of language processing presented in Chapter 2 

nouns and verbs are both chunks and are both susceptible to the same effects of recency and 

structural context. However, this assumption should be tested because previous research has 

found differences between nouns and verbs (e.g. Collina, Garbin & Tabossi 2007; Khader, 

Scherag, Streb, & Rösler 2003). Likewise, research should test the assumption mentioned earlier 

that being early the sentence versus late in the sentence is irrelevant. The assumption stems from 

the fact that all forms associated with a chain receive the same amount of goal-resource 

facilitation or the same rate of utility regardless of their linear order. However, previous research 

has found differences between early-mentioned and late-mentioned items (Gernsbacher 1990), so 

the RICE-based assumption should be tested. 

 2.2 Future work in lexical priming 

The results from the lexical priming study found a sharp difference between primes in 

noun complements and those in all other structural configurations. However, the model of 

processing presented in Chapter 2 cannot as such account for the differences between noun and 

verb complement clauses discussed in Chapter 3. Both the noun and verb complement clauses 

should lead to greater interference and less priming than priming from adjunct clauses and matrix 
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clauses because the unification chains associated with sentences with noun and verb complement 

clauses contain more elements than the unification chains that are generated during the 

processing of single clause sentences and sentences with an adjunct clause. In Chapter 3, I 

proposed two possible explanations for the observed differences between noun complement 

clauses and verb complement clauses. The first possibility was inspired by syntactic work 

exploring the island effects associated with complex noun phrases. Previous research has found 

that extraction from noun complement clauses is not grammatical in English whereas extraction 

from verb complement clauses is (Ross 1967, Haegeman 1991, Lasnik 1999). For example, (5b) 

is ill-formed whereas (6b) is not.  

(5) Extraction from a noun complement clause 
a) Mark knew the fact that Yaron likes crepes. 

b) *What did Mark know the fact that Yaron likes __? 

 

(6) Extraction from a verb complement clause 

a) Mark knew that Yaron likes crepes. 

b) What did Mark know that Yaron likes__? 

 

It may be possible to connect the prohibition against extraction from noun complement clauses to 

weak priming from these positions. If so, then we would expect to find less priming from other 

configurations that lead to island effects, such as subjects (7). 

 

(7) Extraction from a subject 

a) The art of making crepes fascinated Yaron. 

b) *What did the art of making ___ fascinate Yaron? 

 

It is worth exploring these other structures to see if priming may be sensitive to the same factors 

that lead to island effects. 
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The second possible source of the difference is that the effects of each additional chunk 

associated with a chain is not linear but rather exponential. Rather than each chunk contributing 

equally to the processing slowdown, each chunk compounds the effect. Recall that the prime 

sentences with noun complement clauses had two words (“the fact”) more than the sentences 

with verb complement clauses. In Chapter 3, section 5, I argue that these two additional words 

led to weaker priming because of the exponential nature of the fan effect. However, to clarify, 

according to this view, it is not the mere occurrence of more words in a sentence that makes the 

difference but rather the occurrence of additional words that are associated with same unification 

chain as the prime. The addition of adjuncts (e.g. adverbs and adjectives) should not lead to an 

exponential increase in response times. For example, consider (8) and (9) below. 

 

(8) Example of a noun complement clause 

Fatima knew the fact that Yousuf fed the yogurt to the baby. 

Word count: 12 

 

     (9) Example of a verb complement clause 

Fatima knew that Yousuf fed the yogurt to the baby. 

Word count: 10 

 

According to the exponential function explanation, the occurrence of two additional words (“the 

fact”) in the noun complement clause causes enough additional interference to lead to 

significantly slower reaction times for the prime (bolded) in the noun complement clause 

sentence (8) than in the verb complement clause sentence (9). This perspective on the observed 

priming differences between verb and noun complement clauses assumes that additional chunks 

associated with a unification chain can inhibit priming. If this is true, then we should observe a 

difference between arguments and adjuncts in these structural contexts. Additional adjuncts 
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should not differentiate between noun complement clauses and verb complement clauses. For 

instance, adding additional adjunct chains such as those associated with the adjectives in (10) 

should not affect overall response times. However, the extended unification chain that is a result 

of processing the structure associated with “Wendy said that” in (11) should lead to slower 

response times. 

 

(10) Adding new chains (i.e. adjunct chains) 

Fatima knew that Yousuf fed the sour plain yogurt to the happy baby. 

Word count: 12 

 

      (11) Adding to the same unification chain 

Wendy said that Fatima knew that Yousuf fed the yogurt to the baby. 

Word count: 13 

 

The reason that additional adjectives should not affect response times is that they are not 

associated with the same unification chain as the prime. The additional “Wendy said that” in (12) 

is associated with the same unification chain as the prime and as such should affect response 

times. 

2.3 Future work in structural priming 

The most striking finding from the structural priming studies in Chapter 4 was the 

interaction between structural context and time. Priming from relative clauses appeared to 

improve over time whereas priming from verb complement clauses deteriorated over time. In 

Chapter 4, section 5, I speculated that rather than improving at longer lags, primes in relative 

clauses were initially inhibited. This inhibition stemmed from the additional semantic processing 

associated with relative clauses. The processor must saturate the gap’s feature and, thus, the 

empty ‘___’ associated with the ‘spec’ features of the S-gap-chunks with information from the 
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filler element (i.e. the NP-chunk that unified with the open =NP value of the RelC-chunk). This 

may lead to slightly weaker priming at shorter lags due to the additional processing. Currently, 

there is no way to tell whether priming improved for relative clause primes or whether it returned 

to normal after the semantic processing concluded and the memory traces had consolidated. 

Future research needs to explore the time course of priming from relative clauses more closely. 

 The second major finding from the structural priming study was the decrease in priming 

from verb complement clauses over time. I contend that the reason for less priming in the long-

lag experiment relative to the short-lag experiment stemmed from lower utility scores for rules 

associated with relatively long unification chains. If this explanation is correct, then we should 

find improved priming behavior as the processor becomes more familiar with the prime sentence 

pattern.
1
 Previous research has found that participants are sensitive to the frequency of particular 

structural primes in training blocks (Kaschak 2007; Kaschak & Borreggine 2008; Kaschak, 

Loney, & Borreggine 2006) and have used this to argue that participants are learning about the 

overall probability of different alternates.  Participants may also demonstrate learning effects as 

they are exposed to the pairing of verb complement clauses and forms of the dative alternation. 

The more experience the processor has with a rule pattern (e.g. retrieve X, push X, retrieve Y, 

push Y…), the higher the pattern’s utility is, regardless of the length or complexity of the rule 

pattern. As the pairing of the structural prime and the structural context become more frequent, 

                                                 
1
 I am not suggesting that verb complement clauses are infrequent. In fact, they are quite frequent (Roland, Dick, & 

Elman 2007).  Low frequency structures may have low utility scores because the processor does not have a lot of 

experience with them and cannot, therefore, reliably predict their probability of success or cost. However, because 

verb complement clauses are frequent, we cannot assume that the clause type itself led to low utility scores and, 

hence, weak priming. What I am contending is that the ability of the processor to evaluate a particular rule (e.g. one 

associated with building a DO or PD) is more difficult in long unification chains, such as those produced by the 

processing of verb complement clauses. 
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the utility score should increase. This leads one to expect that priming from sentences with 

argument clauses can stabilize after sufficient exposure to the association of the particular 

structural prime with the particular structural context. Priming from verb complement clauses 

after a short lag (1 filler item) was possible because the strength of the rule was still high, even if 

the utility was low. But as the strength decreased due to longer lags (i.e. 3 filler items), the low 

utility score led to weaker priming. As the processor becomes more familiar with the pattern of 

rule firings associated with the long unification chains formed by the processing of verb 

complement clause sentences, the utility scores for this type of sentence should increase. The 

increase in utility scores should lead to more reliable priming regardless of the lag (e.g. even 

after 3 filler items). Thus, the disappearance of priming from verb complement clauses after a lag 

of 3 filler items can be corrected with enough exposure, leading to priming from verb 

complements at long lags comparable to priming from relative clauses at long lags.  

 2.4  Other avenues for exploration with RICE and PRICE  

 A final avenue to explore is naturally occurring speech. Previous research has found that 

speakers tend to repeat the linguistic forms they encounter in their natural environment (e.g. 

Bock et al. 2007, Levelt & Kelter 1982, Jaeger & Snider 2008, Szmrecsanyi 2005). This work 

has found that priming weakens as the distance between the prime and the target increases. 

However, none of this work to date has considered the structural contexts of the prime or the 

target. The studies presented in Chapter 3 and Chapter 4 suggest that the structural context of the 

prime is an additional factor that should be explored in corpus work.  
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3. Final comments on and implications of RICE 

RICE claims that both recency and structural context affect the representation of linguistic forms 

in long-term memory and that differences in these representations lead to different patterns of 

linguistic behavior. The studies in Chapters 3 and 4 support RICE. The structural context in 

which linguistic forms occur mediates the faciliatory effects of recent processing.  

 At times, we study language and priming by trying to examine a specific word or 

structural pattern independent of its larger structural context as though the form is easily 

disentangled from its context. What this dissertation suggests is that priming is sensitive to 

structural context. Priming is affected by both when the prime was processed (as measured by 

recency) and how the prime was processed (as determined by its structural context). These two 

forces blend together and create intricate patterns of behavior. Only by exploring the larger, 

arabesque patterns of language and the way the pieces interact and influence one another can we 

understand the dynamic and interconnected weaving of linguistic forms and behavior. 
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