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ABSTRACT
Word Segmentation, Word Recognition, and Word Learning: A Computational Model of First
Language Acquisition

Robert Daland

Many word boundaries are not marked acoustically in fluent speech (Lehiste, 1960), a fact
that is immediately apparent from listening to speech in an unfamiliar language, and which poses
a special problem for infants. The acquisition literature shows that infants begin to segment
speech (identify word boundaries) between 6 and 10.5 months (Saffran, Aslin, & Newport, 1996;
Jusczyk, Hohne, & Baumann, 1999; Jusczyk, Houston, & Newsome, 1999; Mattys & Jusczyk,
2001; Bortfeld, Morgan, Golinkoff, & Rathbun, 2005) although they possess minuscule receptive
vocabularies at this age (Dale & Fenson, 1996). Thus, word segmentation largely appears before
and supports word learning (Aslin, Woodward, LaMendola, & Bever, 1996; van de Weijer, 1998;
Brent & Siskind, 2001; Davis, 2004 ), rather than the other way around. These results raise
several further questions. How do infants begin to find word boundaries in speech when they
don't know most of the words they hear? How are word segmentation, word recognition, and
word learning linked in development? I propose DiBS — x *Di*phone-*B*ased *S*egmentation
— as a computational model of word segmentation. The core idea of DiBS is to recover word
boundaries in speech based on the immediate phonotactic context, by estimating the probabilities
of a word boundary within every possible sequence of two speech sounds (diphone, e.g. [ba]). As

a proof of concept, a supervised DiBS model is tested on English and Russian data, yielding a



consistent pattern of high accuracy with some undersegmentation. Next, a learning theory is
developed, by which DiBS can be estimated from information that is observable to infants,
including the distribution of speech sounds at phrase edges and any words they have managed to
learn; these models achieve superior segmentation relative to other prelexical statistical proposals
such as segmentation based on Saffran et al's (1996) transitional probability. Finally, this learning
model is integrated with a model of lexical access and word-learning to form a full bootstrapping
model, which achieves a relatively high degree of success in word segmentation, but only partial
success in word learning. The successes and failures of this model are discussed, as they

highlight the need for additional research on wordform learning.
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14
CHAPTER 1: INTRODUCTION

Simply to speak and understand a language is a cognitive and social achievement of
astounding complexity. Even more astounding is the process of learning to speak and understand
a novel language. And what is most astounding of all is the amazing rapidity with which every
typically-developing child learns the language(s) they are exposed to.

By the time they are 3 or 4, children command all fundamental communicative functions
of language — requesting, answering, ordering, stating, and so forth. This fact is illustrated by the

following child utterances from the CHILDES child language database (MacWhinney, 2000):

(1) requesting:  'Is Daddy with you?' (Ross, 2;7, MacWhinney corpus 21al.cha)
answering:  'yeah I pway baskpots' (Ross, 2;7, MacWhinney corpus 21al.cha)
stating: 'T go down in the water' (Ross, 2;7, MacWhinney corpus 21al.cha)
ordering: '‘Now watch' (Ross, 2;7, MacWhinney corpus 21al.cha)

This knowledge extends to fine-grained aspects of language, such as subtle aspects of syntax. To
give but one example, 4-year-old English learners interpret linguistically sophisticated sentences

like (1) in the same way as adults:

(2) Miss Piggy wanted to drive every car that Kermit did.
Interpretation 1: did = drove

Interpretation 2: did = wanted to drive (Syrett & Lidz, 2005)
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That is, like adults, they access either interpretation in a context in which it is true, and reject
both interpretations in contexts in which they are false. Research on (first) language acquisition
attempts to explain when, how, and why children acquire various aspects of their native language.

One of the first steps in language acquisition is word segmentation. Word segmentation is
the perceptual process whereby fluent listeners hear speech as a sequence of word-sized units'.
Word segmentation is evidently a perceptual process, because unlike written English — which
contains spaces betweens words — speech usually does not signal word boundaries with pauses or
other unambiguous acoustic cues (Lehiste, 1960). Word segmentation is necessary for listeners to
perceive unrecognized words in their input; thus, word segmentation paves the way for infants to
proceed from learning “low-level” properties of their language (such as its phonetic categories) to
“higher-level” properties (such as its syntax).

This dissertation takes up the question of how children acquire word segmentation. That
is, it aims to discover what linguistic knowledge infants command that helps them to segment
speech, and how they come to possess that knowledge. The methodology I will adopt is
computational modeling — computer programs that implement specific theoretical proposals
about the acquisition of word segmentation, and analyses of their performance. Since the goal of
this dissertation is to explain the acquisition of word segmentation cross-linguistically, it is

important to test these proposals not just on English data, but on other language data. This

1 A precise, coherent, and cross-linguistically satisfactory definition of 'word' is a topic of considerable linguistic
research and controversy (Bauer, 1983). Thus I will defer detailed discussion of this topic to a later section. I will
note here that for the purposes of this dissertation, 'word' will be operationally defined as a contiguous
orthographic sequence, delimited on both sides by orthographic word boundaries such as spaces or sentential
punctuation.
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dissertation takes a nontrivial step in this direction by testing most of its models in parallel on
both English and Russian, which required deriving a large and comparable Russian phonetic

corpus (also nontrivial!).

Terminology

This dissertation draws from research in a number of distinct fields, with differing and
occasionally idiosyncratic terminology. Therefore it is worth a few moments at the beginning to
clarify the terminology used in this dissertation. A specific technical sense will be used for the
following:

infant. A child between the ages of 6 and 10.5 months of age. (As reviewed in detail
below, the developmental literature suggests that infants have little or no word segmentation prior
to 6 months, and quite sophisticated segmentation abilities by 10.5 months of age.) When
reviewing a study, infant will further indicate an English-learning infant unless specifically noted
otherwise, as the majority of segmentation studies have been conducted in English.

phoneme. A phoneme is a cognitive unit corresponding to a collection of simultaneous
phonological features that is realized in speech as a consonant or vowel. Phonemes are abstract
cognitive units, whose realization as a speech sound depends on various factors, such as the
prosodic position in which they occur. For example, the words pat and tap both contain the
phonemes /p/, /&/, and /t/ in different orders (Hyman, 1975)

phone. A phone is a low-level perceptual category, and is therefore conditioned on its

prosodic position (see review in Pierrehumbert, 2002). For example, in American English the
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phoneme /t/ is typically realized as an aspirated stop in foot-initial position (e.g. Tom), as an
unaspirated stop in a syllable-initial [st] cluster, and as a flap intervocalically in foot-medial
position (butter); foot-finally it alternates between an unreleased alveolar stop and a glottal stop.
Each of these is a distinct phone category.

segment. The terms phoneme and phone distinguish levels of abstractness, so in practice
there is a strong correspondence between the two. I will use segment whenever I wish to refer to
a speech unit but do not wish to take a stance regarding level of abstractness on the part of the
listener.

phonotactics. Phonotactics refers to probabilistic and categorical constraints on
phonological structures and sequences, including syllable structure and stress (Chomsky & Halle,
1965; Jusczyk, Luce, & Charles-Luce, 1994; Dupoux, Kakehi, Hirose, Pallier, & Mehler, 1999;
Hayes & Wilson, 2008). In this dissertation I will focus primarily on segmental sequences and
their distribution within and across words. For example, the sequence [pd] rarely occurs word-
internally.

prosodic word. A prosodic word is a prosodic constituent that generally consists of a
single content word together with associated function words/morphemes, e.g. determiners and/or
inflectional morphology (Selkirk, 1984; Nespor & Vogel, 1986). For example, gotta and
catamaran are both prosodic words with nuclear accents on the first syllable.

morphosyntactic word. A morphosyntactic word is a morphosyntactic constituent which
indicates a lexical or syntactic meaning (Bauer, 2003). For example, gotta could be analyzed as

containing two morphosyntactic words, the semi-auxiliary get and the infinitival marker fo0. In



18
general, a prosodic word may contain one or more morphosyntactic words, but a
morphosyntactic word is not realized across multiple prosodic words (Selkirk, 1984; McCarthy &
Prince, 1986/1996).

phrase. Intonational phrases tend to contain between four and seven syllables, are

typically marked by phrase-final lengthening and phrase-initial strengthening, and usually consist
of one intonation contour with a potential pitch discontinuity at the boundary (Christophe, Gout,
Peperkamp, & Morgan, 2003; Beckman & Pierrehumbert, 1986; Shattuck-Hufnagel & Turk,
1996). I assume phrases contain a contiguous sequence of prosodic words and are demarcated on
both edges by language-universal acoustic boundary cues, such as a syllable-length or greater

pause, phrase-final lengthening?, and phrase-initial fortition®.

In addition to these technical terms, I will use the following acronym:s:

DiBS (Diphone-Based Segmentation). The theory of prelexical word segmentation
developed and tested extensively throughout this dissertation/

MLDT (Maximum Likelihood Decision Threshold). In a signal detection (Green & Swets,
1966) scenario, the value of an observable statistic (e.g. the probability of a word boundary given
the observed diphone) may be compatible with both categories (e.g. boundary, no boundary), but

in general, one will be more likely than the other. The MLDT is the point at which the crossover

2 The claim that phrase-final lengthening is universal is based on the fact that it has been found in all languages
tested, including Brazilian Portugese (Barbosa, 2002), Dutch (de Pijper & Sanderman, 1994), Japanese (Fisher &
Tokura, 1996), French (Rietveld, 1980), and English (Wightman, Shattuck-Hufnagel, Ostendorf, & Price, 1992).

3 Similarly, phrase-initial fortition has been found in all languages tested, including Korean (Cho & Keating,
2001), French (Fougeron, 2001), Taiwanese, and English (Keating, Cho, Fougeron, & Hsu, 2003; Pierrehumbert
& Talkin, 1991).
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occurs; i.e. if the statistic is greater than MLDT, the best decision is to report the signal as
present because that is more likely than the alternative.

ROC (Receiver Operating Characteristic). A plot used in signal detection theory (Green
& Swets, 1966) to illustrate the sensitivity of a detector as a function of detection threshold.

BNC (British National Corpus). A large corpus of British English.

RNC (Russian National Corpus). A large corpus of Russian.

Infant Word Segmentation as a Distinct Research Problem

Infants, unlike adults, do not know very many words. But, like adults, they must solve a
number of related but distinct sub-problems in speech processing, in particular word recognition,
word segmentation, and word learning. Infants' lack of a substantial vocabulary has implications
for their performance on all these sub-problems; in particular, it makes them much harder.

Infants cannot recognize most of the words they encounter. Thus, unlike adults, they are
not always or even usually able to use words they recognize as anchors to segment adjacent
words. In fact, there are well-tested adult models, such as TRACE (McClelland & Elman, 1986)
and Shortlist B (Norris & McQueen, 2008) which plausibly explain word segmentation in adults
as an epiphenomenon of word recognition: “Find the word, and the boundaries come for free.” In
other words, word recognition can be of substantial benefit to word segmentation if many words
are known already.

However, learning words is difficult if one is not able to segment already. This is because

most novel word types are not presented to infants in isolation. In fact, only about 9% of novel
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types are presented in isolation (Brent & Siskind, 2001), even when caregivers are explicitly
instructed to teach new words to their children (Aslin et al, 1996). Thus, the vast majority of word
types that infants eventually learn must have been segmented out from a multi-word utterance. In
other words, word learning appears to require word segmentation.

If word segmentation is driven (only) by word recognition, as models such as TRACE
presuppose, we are forced ineluctably to the conclusion that word segmentation also requires
word learning. That is because word recognition requires knowing some words, and knowing
some words requires having learned them. In other words, under this assumption, not only does
word learning require word segmentation, but word segmentation requires word learning. For this
reason, word segmentation and word learning are referred to as a bootstrapping problem — two
related problems, each of whose solution appears to require having solved the other already.

Fortunately, there is a way out of this logical problem — infants appear to be able to
segment even in the absence of substantial word knowledge. In other words, segmentation is
possible even in the absence of word recognition. This conclusion is warranted by two kinds of
facts. First, a wide range of laboratory studies, reviewed below, converge on the conclusion that
infants begin to evince substantial word segmentation abilities between 6 and 10.5 months of age.
Second, mothers' reports reveal that during this time window, infants know (understand the
meanings of) between 10 and 40 words on average. Thus, the literature on infant speech
perception suggests that segmentation is largely a prelexical process: “Find the boundaries, and
the word comes for free.”

The problem, then, is how infants infer word boundaries without knowing (very many)
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words. A major step forward came with the seminal study by Saffran, Aslin, & Newport (1996),
who showed that infants use prelexical statistics in the speech stream to segment it into word-
sized units. Subsequent work in this line of research — of which this dissertation is a part — has
been aimed at discovering which statistics and representations it is that infants use to discover
word boundaries.

There is still something of a logical problem with this formulation, however. Essentially,
infants are looking for the statistical signature of word boundaries. This statistical signature arises
from the fact that languages have regularities in the sound sequences that make up words. For
example, /h/ occurs quite frequently in English word-initially (who, how, human, hat, etc..), but
may not occur foot-internally, so the occurrence of /h/ is a strong indicator of a word onset, even
though it can occur word-medially (mahogany, vehicular). A listener who is equipped knowledge
of these regularities, known as lexical phonotactics, can make generalizations about which sound
sequences are likely to constitute words. But how can an infant who does not possess a sizable
lexicon possibly estimate the statistical signature of word boundaries?

To summarize, word segmentation is hard for infants because they don't know very many
words. One consequence is that they cannot usually segment speech by recognizing words, as
adults appear to do. The simplest remedy to this problem would be to learn more words, but since
caregivers do not typically present novel words to children in isolation, it appears that they must
be able to segment in order to learn more words. Thus, infants must make use of some kind of
prelexical cue to segment. And again, because they do not know very many words, they are not

able to estimate the statistical signature of a word boundary from the words they know. In every
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case, the lack of specific word knowledge impedes word segmentation. Infant word segmentation
is a more difficult problem than adult segmentation, since the infants know less than adults, but
must learn more about the words they hear. To address this problem productively, it will prove

helpful to discuss what a 'word' is.

What is a Word?

Morphologists are in general agreement that there is no single, cross-linguistically
applicable, and unproblematic definition of word (Bauer, 1988; Lieber & Stekauer, 2009). This is
an area of active and ongoing research, so it is beyond the the scope of this dissertation to review
the state of the field; thus here I simply give a brief overview.

Two conceptually distinct but related 'clines' can be discerned in the morphological
literature: productivity, and number of words. Productivity refers to the frequency with which a
process applies to create new sequences; for example -ness can be suffixed to nearly any English
noun or adjective, whereas new words suffixed with -4 almost never appear (Baayen, 2003).
Number of words refers to the number of words in a sequence; for example cat clearly consists of
one word and middle management clearly consists of two words. I will show below that these
clines are related but dissociable. That is, it is more often the case that relatively unproductive
processes result in sequences that have most or all of the properties of single words, and it is
more often the case that highly productive processes tend to result in sequences that have most or
all of the properties of multi-word sequences; but there are examples at all four extremes. Fig 1.1

may serve to illustrate this claim:
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sinflection (cats) highly productive slight verbtobject (make gea)
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¥ »
ssimplex word (car) unproductive

Fig 1.1: Dissociable productivity and number-of-words clines

Note that the relative positions of items in this diagram are not intended as strong claims about
relative productivity or number of words; they are intended to illustrate dissociability of the two

clines, as described in more detail below.

Productivity Cline

The productivity cline has most recently been the subject of intensive research by Hay and
colleagues (Baayen, 2003; Hay, 2003; Hay & Baayen, 2002; Hay, Pierrehumbert, & Beckman,
2004; Hay, 2007), focusing especially on complex words, which can be provisionally defined as
consisting of 1 free morpheme and 1 or more affixes (but also including cases in which an affix
is affixed to a morpheme that does not occur in isolation, e.g. obtuse, infer). These researchers
have identified a host of properties that correlate with each other, given below with examples that

illustrate the contrast:



Property complex/decomposable | less decomposable
junctural phonotactics obtuse obdurate
semantic transparency disarmament government
base/derived relative frequency softly (soft > softly) swiftly (swift < swiftly)
phonetic force of affix unmetalled (220 ms) unfortunately (60 ms)
affix productivity -ness -ism
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Table 1.1: Productivity cline properties (Hay, 2003; Hay & Baayen, 2002; Hay, 2007)

Complexity, or decomposability, is typically assessed with an experimental task, in which
participants are asked to rate the complexity of a form (after a pre-test with clear-cut examples
such as cat ~ simplex and cat-like ~ moderately complex) (Hay, 2003). Junctural phonotactics
refers to how typical a sequence is across word junctures (Pierrehumbert, 2001; Hay, 2003;
Hockema, 2006); it is the measure which is precisely formalized in the theory of Diphone-Based
Segmentation (DiBS) presented in Chapters 2-4. Semantic transparency, also called
compositionality, refers to the extent to which the meaning of a whole can be predicted from the
meaning of its parts and the nature of their combination. For example, happiness can be
transparently explained as the abstract property of being happy; crystal clear has the literal
meaning of 'as clear as crystal', from which the more typical meaning of 'very clear' can be easily
derived from pragmatic principles; wireless has the literal meaning of 'without wires', from
which the more typical meaning 'able to communicate without physical contact' might be derived
pragmatically but certainly less easily; and finally confuse, whose typical meaning bears no
transparent relationship to the meanings of con- 'with, together' or fuse 'meld, join'. Semantic

transparency can be assessed using dictionaries under the assumption that forms with
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noncompositional meanings are more likely to be listed separately and/or with a greater number
of distinct senses (Hay, 2003). Phonetic force of the affix refers to vowel duration of the single
suffix un- in Hay (2007); it is called phonetic force here because these results presumably will
generalize along the lines of articulatory effort. Affix productivity refers specifically to the
category- and hapax*-conditioned measures discussed in Baayen (2003) and tested extensively in
Hay & Baayen (2002). The most interesting conclusion from these studies is not that
morphological processes may vary along these dimensions — that was well-known before (cf.
Bauer, 1988) — what is interesting about these studies is the incredible predictive power each

measure has for the others (Hay & Baayen, 2002, Table 3).

Number-of-Words Cline

A cline can be discerned in the number of words, as well, as exemplified in the following

table:

simplex | complex | compound | collocation fixed phrase
dog doggish | doghouse | dog-tired Dog is man's best friend.
cat cat-like catseye | feline grace Cats have nine lives.
dish dishless | dishwasher | satellite dish | Revenge is a dish best served cold.

Table 1.2: Number-of-words cline examples

At one end of the cline, simplex items are canonical single words, with no discernible subparts.

At the other end of the cline, fixed phrases clearly contain more than one such simplex item,

4 A hapax type is a word which occurs only once in a given corpus (Baayen, 2001).
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possibly with additional subparts. In the middle of the cline lie compounds, which differ from
simplex words in possessing two discernible sub-parts that otherwise can occur as
simplex/complex words, but nonetheless share many properties of single words. Complex words
are between simplex words and compounds, in that they usually contain a single free morpheme
(like simplex words) and additional parts (like compounds), but unlike compounds, the additional
parts are bound affixes, i.e. parts that may not occur without a word to affix to. Collocations are
between compounds and fixed phrases in that they typically consist of multiple free morphemes,
but are generally more separable than compounds, in ways that will be made more precise below.

There are a variety of properties in the literature that separate this cline (defined below):

simplex | complex | compound | collocation | fixed phrase
Isolable sub-parts 0 1 2- 2+ 2+
Single stress/accent 1 1 indef. indef. >1
Uninterruptable yes usually | usually sometimes | sometimes
Minimal movable unit yes yes usually sometimes rarely
Minimal elidable unit yes yes usually sometimes rarely

Table 1.3: Number-of-words cline properties

An isolable unit is a unit that can be pronounced in isolation. For example, dog can be

pronounced in isolation, so it is isolable; in contrast, -ish is not isolable. Thus, dog has no proper

sub-parts that are isolable, where doggish has one proper sub-part that is isolable. Note that

function words such as the and he are not isolable (except under narrow focus, under which

nearly every linguistic unit is isolable); thus this criterion does not distinguish between bound
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affixes and functional items that are otherwise analyzed as free.

A more specifically phonological criterion is that simplex and complex words typically
bear a single accent. For example, cat and catty both have a single stress on the leftmost syllable,
whereas nine lives has two stresses in my idiolect. This criterion is somewhat problematic for
compounds and collocations, where intuitions appear to vary considerably. For example, Lieber
& Stekauer (2009) cite apple pie as right-stressed and apple cake as left-stressed, although it
might be more satisfactory to count this as a prominence contrast (Ladd, 1996); indeed, there is a
lively literature which attempts to predict the location of prominence in compounds and other
collocations (Giegerich, 2004; Jones, 1969; Liberman & Sproat, 1982; Marchand, 1960; Olsen,
2000; Plag, 2006; Sampson, 1980), including some literature documenting contextual variability
in prominence assignment (Bauer, 1983; Kingdon, 1958; Roach, 1983; Stekauer, Valera, & Diaz,
2007). From a phonological standpoint it is appealing to analyze compounds such as doghouse,
firetruck, penknife, and raspberrylcranberryl/huckleberry in the same way as collocations, since
outside of these compounds, the less-prominent vowel typically occurs under primary lexical
stress. Moreover, it is possible that multi-word phrases often have multiple pitch accents that
could help to decompose the speech stream in ways not explored here (Pierrehumbert, p.c.). But 1
do not wish to take a strong stance on these issues at present. The relevant point is that while
simplex and complex words clearly possess a single accent and fixed phrases clearly possess
multiple accents, the facts are decidedly less clear for compounds and collocations, and merit
further theoretical and empirical research — a point to which I will return in Chapter 5.

Various syntactic criteria have also been proposed to distinguish the number-of-words
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cline. In particular, simplex/complex words can be distinguished from many multi-word
sequences by the inability to insert intervening material. For example, it is not grammatical to put
any material inside the simplex verb call without destroying it (*ca-boyfriend-1l), whereas the
phrasal verb call up can take its object between the verb and the particle (call my boyfriend up).
This metric is not absolutely diagnostic in English, as the process of expletive-infixation in
English can split morphemes, for example absofuckinglutely, as it operates on the phonological
domain of the foot rather than a morphological domain (McCarthy, 1982). Moreover, while
collocations typically allow intervening material, it often destroys any noncompositional
meaning, e.g. bread and butter science means 'everyday, normal, prototypical science' whereas
bread and creamy butter science is not really interpretable without a special discourse setting
that renders some contextual support to an appropriate metaphorical meaning for creamy butter.

Finally, simplex and complex words can be diagnosed as minimal syntactic constituents
for various operations. For example, sub-parts of a word cannot be fronted: Bagels, I like ('l don't
like those other things but I like bagels') but *-s, I like bagel (*'T don't like just one bagel, but I
like multiple bagels'). No such restriction applies to collocations, e.g. Middle is the kind of
management he is. Similarly, sub-parts of a word cannot be elided, but parts of collocations can

be elided:

(6) Q: What level of management is he? Q: Did you encode it?

A: Middle. A: *No, de
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Relatedly, one-substitution is not generally possible for compounds, e.g. the black one can refer
to a black bird, but *the blackone cannot refer to a blackbird. But even this test has issues, e.g.
He wanted a riding horse, as neither of the carriage ones would suffice when riding horse
otherwise behaves like a compound (Bauer, 1988).

In summary, there is a cline from unambiguously simplex to unambiguously multi-word
sequences. There are a variety of phonological, semantic, and syntactic criteria which tend to
separate the cline at varying points, and with varying degrees of reliability; in practice it is easy
to distinguish one word from two in many cases, but compounds and collocations are a gray area.

With this background in hand, I now turn to what is known about how infants segment words.

Developmental trajectory of word segmentation
Broadly speaking, the acquisition literature shows that infants acquire impressive word
segmentation abilities between 6 and 10.5 months of age. This section reviews this
developmental literature in detail. However, it begins with a brief overview of infant

methodology, so that it is clear how the infant data were collected.

Methodology

Because infants are not capable of (or interested in) following directions, infant
perception must be assessed indirectly. Typically, the researcher attempts to manipulate and/or
measure the infant's attention; the vast majority of infant studies on word segmentation use a

looking time paradigm (Fantz, 1964) Looking time paradigms are based on the assumption that
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infants gaze at objects they are attending to, so that gaze duration is a proxy for duration of
attention.

As a consequence, the test phase of a word segmentation experiment always involves a

visual stimulus and a set of auditory stimuli. A typical physical setup is shown in Fig. 1.2:

Fig. 1.2: Laboratory apparatus for infant language development studies

The infant is seated in an infant-appropriate chair or caregiver's lap, facing toward a visual
display, with mounted speakers on either side. (The location of the speakers and screen may vary
with the paradigm).

A typical test phase will involve a single visual stimulus and two different auditory
stimuli. For example, the visual stimulus might be a picture of a flower, and the auditory stimuli
might be the words bin and din. In the simplest case, the experimenter would assess the infant's
preference for these with separate test trials, in which each auditory stimulus is repeated with
short pauses between repetitions. That is, in one test trial, the infant would see the flower and

hear bin.. bin.. bin; in another test trial the infant would see the same flower and hear din.. din..
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din. If the infant exhibits a difference in gaze duration between these two test trials, it is likely
due to a preference for one auditory stimulus over the other (since the visual stimulus is the
same).

The most common variation on this basic paradigm is known as a familiarization-
preference test. In this variant, the infant is first familiarized to a passage containing a target word
or set of words in fluent speech. Then, during the test phase, the infant is assessed for preference
of the target versus some competitor, e.g. a part-word which is consistent with an incorrect
segmentation of the familiarization passage. Other variants of this basic paradigm involve
habituation and/or conditioning (e.g. Werker & Tees, 1984). In a habituation paradigm, the infant
is first habituated to one auditory stimulus, then presented with the alternative stimulus;
habituation is especially suitable for determining whether infants can discriminate two stimuli, as
a strong recovery in looking time occurs when the change is detected. In a conditioning
paradigm, the infant is conditioned to turn their head upon detecting something in the auditory
stimulus such as a change; conditioning is accomplished by means of toy which lights up and
emits sounds when the target is presented. A concrete example is given below, in the form of a
description of Saffran, Aslin, & Newport's (1996) seminal segmentation study.

The experimenters in Saffran et al. (1996) constructed an artificial language made up of 4
words: pabiku, tibudo, golatu, and daropi. Two-minute passages were constructed by
concatenating tokens of these words, subject to the constraint that the same word was not
repeated directly after itself. These passages were synthesized with flat prosody to eliminate

normal boundary cues such as stress, pitch reset, and phrase-final lengthening, yielding strings
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like the following:

(7a) ..golatudaropitibudopabikugolatupabikutibudodaropitibudodaropipabikugolatudaropi..

For the reader's convenience, the string below uses both text formatting (underlining, etc...) and

colors to indicate the appropriate segmentation:

(7b) ..golatu tibudopabikugolatupabikutibudo tibudo pabikugolatu

At test, infants were presented with two types of stimuli: words and part-words. Words were
actual words in the target language. Part-words were sequences consisting of the end of one word
and the beginning of another, e.g. fupabi from golatu + pabiku. Thus, infants were exposed to
both words and part-words during familiarization, and the test phase was designed to determine
whether they attended differently to these two classes of stimuli. In fact, 8-month-old infants
reliably distinguished the words from the part-words. Saffran et al. (1996) concluded that infants
were segmenting words based on statistical properties of the speech stream (since there were no
other properties, such as prosody, that differentiated words from part-words).

Having outlined the general pattern in infant segmentation studies, I will generally omit
discussion of the methodology, except where it is especially relevant, with the aim of maintaining

focus on the theoretical import of the findings.
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Trajectory

Already by 4.5 months infants recognize the sound pattern of their own name (Mandel,
Jusczyk, & Pisoni, 1995). Specifically, the researchers found that infants preferred their own
name to foils that were matched and mismatched in stress template (e.g. Johnny prefers Johnny to
Bobby). Strictly speaking, this study is not evidence for word segmentation at 4.5 months. This is
because infants do not actually need to segment anything to succeed at the task. The test phase
presents the name in isolation, so the test phase does not require segmentation. And since adults
are likely to frequently call their infant's name, infants are likely to hear their name in isolation
frequently. Thus, this study shows that infants recognize sound sequences that they are likely to
have heard in isolation. And since it is the earliest reported effect, we may regard 4.5 month as
the lower cutoff; prior to this age there is no evidence of segmentation at all.

The earliest age at which bona fide segmentation is reported is 6 months. Bortfeld,
Morgan, Golinkoff, and Rathbun (2005) showed that infants used their own name to segment the
following word. Specifically, they exposed infants to sequences like [name]'s bike and [foil]'s
cup, where [name] refers to the infants own name and [foil] refers to some other (stress-template-
matched) name. At test, infants were assessed for preference of the targets in isolation. Infants
preferred the familiar words that co-occurred with their own name to the alternate words that co-
occurred with the foil, showing that they were able to segment words that occur after their own
name. However, infants did not prefer the alternate words to control words they were not
familiarized to, suggesting that they did not segment the alternate words. In other words, the

presence of a familiar word (their name) facilitates segmentation of the following word. The
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utility of this segmentation strategy is somewhat limited, however: although infants are likely to
hear their name quite frequently, it is unlikely to co-occur with most of the novel words they
occur.

In contrast, English-learning infants have learned to use a slightly more general cue by 7.5
months — stress (Jusczyk, Cutler, & Redanz, 1993). Because the dominant stress pattern of
English words is for the primary stress to fall on the initial syllable, infants can do fairly well by
positing word boundaries at the onsets of stressed syllables. (Specifically, Cutler & Carter (1987)
showed that 90% of the content words in a spoken corpus were stress-initial.) Jusczyk, Houston,
& Newsome (1999) showed that 7.5-month-olds do exactly that, using stress to segment novel
words from fluent passages. Crucially, they found that infants exhibit this metrical strategy even
when it yields the incorrect segmentation. For example, when infants are faced with a novel noun
such as guiTAR that violates the general strong-weak stress pattern, they appear to treat TAR as
the onset of a novel word. Thus, infants segmentation abilities are no longer limited to the item-
specific recognition evident at 6 months; by 7.5 months they have acquired the generalization that
English words exhibit a strong-weak stress pattern and exploit it for word segmentation.

By 8 months, infants make use of some kind of sublexical statistic such as transitional
probability” to segment novel words from an artificial language (Saffran et al., 1996). Subsequent
research using the same paradigm has shown that such statistical cues are not heavily weighted in

comparison to other linguistic cues, such as coarticulation® and stress (Johnson & Jusczyk, 2001).

5 Transitional probability p(x — y) is the conditional probability of observing y as the next event, given that the
current event is X.

6 By coarticulation, the authors meant fine phonetic variation that would not distinguish phone categories, such as
the natural acoustic effect of a consonant on a vowel in the preceding syllable. They did not study coarse
variation such as place assimilation, which would distinguish phone categories.
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While these results raise important questions about the nature of the cues that infants really
attend to, they do not directly contribute to our understanding of segmentation. This is because in
normal usage, linguistic cues rarely compete with one another, rather exhibiting “confluences
across levels” (Pierrehumbert, 2003) which generally line up to suggest the correct parse.

By 9 months, the statistical cues that infants make use of include native-language
phonotactics (Friederici & Wessels, 1993). This is the earliest that infants have been shown to
know the difference between native and non-native phonotactics (Jusczyk, Friederici, Wessels,
Svenkerud, & Jusczyk, 1993), and in fact, they are sufficiently sensitive as to prefer high-
frequency sequences over low-frequency sequences (Jusczyk, Luce, & Charles-Luce, 1994), a
preference which they do not exhibit at 6 months.

Of special relevance for this dissertation are a sequence of studies by Sven Mattys and
colleagues, demonstrating how infants' burgeoning knowledge of phonotactics is recruited for
word segmentation. The starting point for this research is the observation that most diphones —
sequences of two segments — exhibit highly constrained distributions; more specifically, a
diphone normally occurs either within a word, or across a word boundary, but not both
(Hockema, 2006). For example, the sequence [tp] occur almost exclusively across word
boundaries, whereas the sequence [ba] primarily occurs word-internally. For this reason, this
dissertation may refer to word-internal diphones as WI and word-spanning diphones as WS.

Mattys, Jusczyk, Luce, & Morgan (1999) exposed infants to CVC.CVC nonwords,
manipulating both the medial C.C cluster and the stress pattern. They found that infants'

preference was modulated most strongly by stress pattern, but was also sensitive to diphone status
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(WI or WS). Since raw diphone frequency was controlled, this indicates that infants are sensitive
to the relative frequency with which diphones span word boundaries specifically.

In a follow-up study, Mattys & Jusczyk (2001) showed that infants use this diphone cue to
segment novel words from an utterance-medial position. They did this by familiarizing infants to
passages in which a novel target word (gaffe or tove) was embedded in a context consisting of two
novel words. For a word in the WS condition, the context was chosen so that the diphones at both
edges of the target were word-spanning. For a word in the WI condition, the context was chosen
so that the diphones at both edges of the target were word-internal. In other words, the WS
context facilitated segmenting the target out as a novel word, whereas the WI context inhibited
segmenting the target out as a novel word. Example stimuli in English orthography are given

below in Table 1.4:

target WS WI
gaffe ... bean gaffe hold ... ... fang gaffe tine ...
tove ... brave tove trusts ... ... gruff tove knows ...

Table 1.4: Stimuli in Mattys & Jusczyk (2001)

Infants were divided into two groups; one group heard fove in the WS context and gaffe in the WI
context, and the other group heard fove in the WI context and gaffe in the WS context. Infants
consistently preferred the target word that was embedded in the favorable WS context to the
target that was embedded in the unfavorable WI context, and they did not differ in preference

between the target in the unfavorable WI context and control words to which they were not
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familiarized. Thus, this study showed that infants exploit phonotactic cues at word edges to
segment novel words from an unfamiliar, phrase-medial context.

By 10.5 months of age, infants are able to exploit ever more phonotactic information. In
particular, they are able to use allophonic variation’ which cues word boundaries, appropriately
segmenting night rate as two words but recognizing nitrate as a single word (Jusczyk, Hohne, &
Baumann, 1999). In addition, they have learned to integrate phonotactic cues with prosodic cues,
correctly segmenting weak-strong nouns such as guitar where 7.5 months mis-segment this word
because of its atypical stress pattern (Jusczyk et al, 1999b).

In summary, infants undergo a rapid developmental shift between 6 and 10.5 months of
age. At 6 months of age, infants have just learned to use their own names as anchors for
segmenting the following words. By 7.5 months of age, they exploit the dominant strong-weak
stress pattern of English to posit word boundaries at the onsets of stressed syllables. Between 8
and 10.5 months of age, infants exhibit increasing command of the phonotactics of their
language, learning which sound sequences are frequent in their language and which are likely to
signal the presence of a word boundary. Crucially for this dissertation, by 9 months of age, they
pass the 'acid test' of segmenting novel words from novel contexts using their knowledge of word-
spanning diphones. Thus, by this age phonotactic knowledge has become an important

component of how infants' segment speech prelexically; this knowledge is from generalizations

7 The term 'allophonic variation' is used here as it is standardly used in linguistic theory (Hyman, 1975), to indicate
forms which in the adult grammar originate from the same phoneme(s), but differ in their surface realization
owing to prosodic or other factors. In this case, nitrate and night rate both contain a /tr/ sequence, but the
phonetic realizations differ because the two consonants are syllabified together in the onset in nitrate, but split
into different syllables in night rate, with attendant phonetic consequences. The use of the term 'allophonic
variation' here is not intended to imply that infants actually know that these two sequences are phonemically
identical; merely that whatever causes this variation, infants use it.
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over the phonological structure of their language, which is how infants can segment speech even

when they do not recognize all of the words they hear.

Theoretical Models
In recent years, there has been a flurry of research on word segmentation, from a variety
of different theoretical perspectives. For theoretical convenience, I have classified existing
models into four categories: connectionist, coherence-based, bayesian-joint, and phonotactic. 1
will analyze each of these classes in turn, describing its major properties, the insights it has
produced, and limitations. Before this, however, I will describe the properties I see as important

for a model of word segmentation.

Desiderata

Before discussing particular models or classes of models, it may be useful to consider the
properties that we desire in a model of word segmentation. The overarching criterion I will adopt
1s that the model be cognitively plausible, 1.e. that it incorporates reasonable assumptions about
the kinds of input, representations, and computations that listeners are able to perform. This
general criterion can be broken down into several more specific properties, whose names I have
italicized for later reference.

A fundamental property of human language acquisition is that it is largely unsupervised,
meaning that children must infer the correct solution on their own, rather than being told by a

caregiver. For example, in word segmentation, adults do not normally indicate the position of the
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word boundaries in what they said (e.g. by snapping their fingers between words). All the models
I consider below are unsupervised,® thus I do not discuss this property further.

Another basic property of a cognitively plausible model is that it explains the target
behavior (word segmentation) in some baseline case; in other words, the model must be testable.
In fact, it is desirable that model not only be testable in principle, but that it actually be
computationally implemented. By implemented, I mean that a working piece of software exists
which implements a segmentation proposal in a paper. This provides other researchers with a way
to falsify the model, by testing its performance on language data. It further provides for fair
comparisons with other published implementations.

Beyond the basic ability to test a model, there is a further criterion of what kinds of
language data it has been tested on. As will be evident from the discussion below, the great
majority of published models have only been tested on English data, or artificial languages with
English-like phonological properties. Thus it is unclear whether the success of these models owes
to specific properties of English, or whether the model is of language-general applicability. This
is of especial concern for English since it is relatively unusual both in its impoverished
inflectional morphology and its highly complex phonotactics, both of which could plausibly
affect the segmentation models discussed below. Since the research problem in this dissertation
is the acquisition of word segmentation, which infants of all languages must solve, only models

of the latter, language-general class are candidates for a general solution. The best way to

8 Some of the models I consider treat phrase boundaries as word boundaries, and utilize this information for word
boundary inference elsewhere. This could be regarded as supervised data, since the algorithm is being given
some input/output pairs in which the presence of the “output” (a word boundary) is certain. However, I do not
regard this as supervised learning, since the adult does not tell the child that phrase boundaries are also word
boundaries. Rather, this is an inference that the child appears to make on their own (Soderstrom, Kemler-Nelson,
& Jusczyk, 2005).
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determine this is to test the model on cross-linguistic data, i.e. language data from any languages
other than English.

As discussed above, word segmentation and word learning are not independent problems.
Thus, a full developmental account of segmentation should also include some account of lexical
acquisition, i.e. word learning. One strategy that computationally-minded researchers have taken
is to treat these two problems as a joint optimization problem, in which both word segmentation
and word learning are accomplished by the same algorithm. The alternative strategy is to treat
these as related but logically distinct problems, and then to specify the relationship between
lexicon and segmentation.

Finally, a cognitively plausible model should be incremental since human language
acquisition is. A batch model is one which segments an entire input corpus all at once. In
contrast, an incremental model develops in response to language input, accepting input at some
child-realistic scale, and then modifying its internal representations and segmentation processes
according to its language exposure. Of course, some batch models can in principle be converted
to incremental models simply by feeding in input in smaller chunks. Thus, the operational
criterion for whether a model is incremental or not is whether the model requires batch input, as

described in a publication.

Connectionist Models
The first connectionist model that bears on word segmentation is Elman's (1990) seminal

paper describing the Simple Recurrent Network (SRN). Since the SRN architecture is used in
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nearly all of the models reviewed in this section, it bears describing. An SRN is similar to a
standard 3-layer feedforward network, consisting of an input layer, a hidden layer, and an output
layer. Information at the input layer (typically a binary vector) is communicated to the hidden
layer via connections which stretch (multiply) the input and then squash it (via the logistic
function); in exactly the same manner, information at the hidden layer is transmitted to the output
layer. An SRN differs from a standard feedforward net, however, in that it possesses an additional
context layer which serves as a short-term memory. It does this by copying the hidden layer
activations from the previous time step and transmitting them to the hidden layer in the current

time step’ (see Figure 1.3 for illustration)
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Fig 1.3: Architecture of Simple Recurrent Network

9 Since the hidden layer at the previous time step itself had access to the hidden layer from the time step before

that, the hidden layer can in principle encode events and contexts over many time units (Botvinick & Plaut,
20006).
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Like feedforward networks, the SRN is most commonly trained using a variant of the
backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986). Backpropagation trains the
network to minimize the difference between its output and the correct output, in effect “giving”
the network the correct answer. Thus, backpropagation is normally regarded as a supervised
training algorithm, and therefore not appropriate for modeling language acquisition. This issue is
circumvented in the SRN by making the output be a prediction about the upcoming input, i.e. a
prediction task. Since this information actually does become available to the infant, the
prediction task can be regarded as an unsupervised training algorithm.

Elman (1990) trained an SRN with sequences of letters generated by connected words
from an artificial (miniature) language. The crucial finding from this paper was that prediction
error was strongly correlated with word position. More specifically, prediction error tended to
decrease across a word, so that a sharp increase in prediction error was strongly correlated with a
word boundary.

Following this line of research, Aslin et al (1996) trained a feedforward network (like an
SRN, but without the “memory” of a context layer) whose input consisted of trigrams of phonetic
feature bundles, together with an “utterance boundary” indicator (i.e. spatial representation of
time). As per the prediction task, the network's task was to predict the value of the utterance
boundary indicator. The researchers found that the utterance boundary unit fired not only at
utterance boundaries, but also at utterance-medial word boundaries. In other words, this study

showed unequivocally that phonological information at the end of utterance boundaries is also
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informative for detecting word boundaries. 1 will return to this point in Chapter 4.

Cairns, Shillcock, Chater, and Levy (1997) focused on the role of phonotactics. They
showed using an ideal-observer model (equivalent to the baseline model in Chapter 2) that
diphones are an excellent segmentation cue. However, they were unable to train their SRN to take
advantage of this cue in an unsupervised way. Thus, this study highlighted both the potential
utility of the diphone cue, and the learnability problem of how infants could access that utility.

In a related line of research, Christiansen, Allen, and Seidenberg (1998) trained an SRN
on the prediction task with a spoken corpus. Unlike previous models, this SRN was supposed to
predict both the utterance boundary marker and the upcoming phoneme. To be more precise, the
researchers considered a variety of conditions in which more or less corpus information was
supplied to the model. For example, they contrasted cases in which the main stress was either
supplied or withheld from the network. In every case, they found that the more cues the model
received in its input, the better its all-around performance. Although perhaps not surprising when
framed this way, it is also the case that the more cues the model gets, the more cues it must
predict, and thus, the more difficult the overall task becomes. In other words, even though
combining cues in some sense represents a computational burden, the SRN model nonetheless
exhibits better performance when it is given access to a wider range of cues. To the extent that
the SRN mimics human performance, it gives insight onto why humans are so good at
segmenting speech.

The last contribution to the connectionist approach to word segmentation is Davis (2004),

although this model could more properly be described as word recognition. As in the earlier
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connectionist models, Davis exposed an SRN to a phonetic sequence. However, the nature of the
prediction task was quite different. In this case, the network was asked to predict the semantic
content of the utterance. The semantic content was coded using a localist representation in which
each output node stood for a word from a mini-lexicon of 20 words. Thus, the phrase GIRL HIT
BOY would be coded by activating the GIRL, HIT, and BOY nodes. By the end of training the
network recognized an extremely high proportion of words as they were spoken, indicating that it

had also segmented and learned them.

These are major papers in what I am calling the connectionist approach to word
segmentation. In terms of the desiderata I described above, connectionist models are inherently
implemented and incremental. To my knowledge, no such model has been tested on cross-
linguistic data, although in principle this is possible. Most of the connectionist models described
above do not have an explicit lexicon, and so do not address the related problem of word learning.
However, Davis (2004) and arguably Elman (1990) achieved joint segmentation and lexicon
discovery for artificial languages with small, closed vocabularies.

The major advantage of this approach is evident from the review above: each study
illustrates that segmentation that some cue or set of cues is useful for word segmentation with a
fairly general-purpose learning algorithm. For example, the Aslin et al (1996) study shows that
utterance-boundary distributions are informative. Thus, these studies have made important
contributions to the acquisition of word segmentation by demonstrating what aspects of the

signal are informative.
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One major limitation of the connectionist approach is that it is not usually clear why a
given result obtains. For example, while the Aslin et al (1996) study shows that utterance-
boundary distributions are informative for word segmentation, it is not clear what specific
information the network exploits. For example, one kind of information that the model might
extract is the probability distribution for word boundaries given the current input segment. The
behavior of Aslin et al (1996)'s model is broadly consistent with the interpretation that the hidden
layer encodes this distribution. But it is also broadly consistent with a variety of alternative
interpretations, for example, that it encodes one of the coherence-based statistics reviewed in
more detail below. This issue is not specific to Aslin et al.'s (1996) network, but is endemic to the
connectionist approach, and follows from the fact that connectionist networks 'are high-
dimensional systems and consequently difficult to study using traditional techniques' (Elman,
1990, p. 208). In other words, the hidden layer representations are opaque, standing in a non-
transparent relationship both to input and output representations.

A second limitation to the connectionist approach is the question of how segmentation is
related to lexical acquisition. Of the models described above, most do not have an explicit
lexicon, so it is not clear what kind of relationship such models predict. The absence of a lexicon
in these models is not an intrinsic property of connectionist models. That is, it is logically
possible to extend these models to somehow incorporate a lexicon. But there is not one obvious
right way forward in this line: a number of important properties would need to be worked out,
such as how the budding lexicon impacts existing segmentation, and how a new word is learned.

The exception to this is Davis (2004) (and arguably Elman, 1990), in which word
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segmentation is driven by word recognition. In these models, lexical representations are de facto
stored in the weights connecting the various layers, which are the same weights that instantiate
the other forms of processing that the network exhibits. Because these connections weights have
a limited capacity, and since both of these networks are trained on a mini-lexicon consisting of
not more than 30 words, it is unclear whether the same results would “scale up” to an open
vocabulary such as infants are exposed to.

One reason to believe these results would not scale up is training time. Davis' (2004)
model required 500,000 training sequences of 2-4 tokens each to learn 20 words. To put this in
perspective, that's approximately 75,000 exposures per word, whereas laboratory studies show
that 14-month-olds can form-meaning associations from about 10 exposures spread out over a
few minutes (Booth & Waxman, 2003), and adults are 80% successful at learning form-meaning
associations with 7 exposures (Storkel, Armbruster, & Hogan, 2006). Thus, there are important
differences in the amount and quality of data that yield word-learning in humans versus in
existing connectionist models.

In summary, the connectionist approach is excellent for determining whether something is
possible, but it offers little insight into why or how. Connectionist research on word segmentation
has made several important contributions to our understanding of infant word segmentation, in
particular the observations that utterance boundaries and phonotactics are highly informative.
However, owing to the opacity of hidden layers in connectionist networks, it is not really clear
what properties of utterance boundaries or what specific phonotactic cues are being used. A

related issue is the role of a lexicon in word segmentation. Most connectionist models do not
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have a lexicon, and while there is no reason in principle they cannot be hooked up to a lexicon,
the nature of the processing relationship is not a priori clear and must be worked out. In existing
models that do acquire a lexicon, the lexical representations are opaque, and unlikely to scale up

to the open-vocabulary conditions faced by infants.

Coherence-Based Models

Responding in part to the issue of opaque representations in the connectionist approach, a
number of researchers have proposed particular statistics that infants may attend to which could
help them “get off the ground” in word segmentation. For example, Saffran et al (1996) proposed
that infants posit word boundaries at points in the speech stream which exhibit low transitional
probability, i.e. in which the following segment is especially unlikely to follow the current
segment. The intuition underlying this and related proposals is that words are coherent units, so a
statistic that measures local coherence should be greater within words than across word
boundaries. The (forward) transitional probability is just such a statistic.

All of the coherence-based measures I will discuss can be defined with reference to the
unigram and bigram distributions, so I will begin by defining those. The unigram frequency f{x)
of a linguistic unit x in some corpus is the number of times that x occurs in the corpus. For
example, in the “corpus” consisting of the preceding sentence, the letter x occurred twice, so its
unigram frequency is 2. Analogously, the bigram frequency f{xy) of a 2-unit sequence xy is the
number of times that x occurs followed immediately by y. For example, in the corpus consisting

of the previous sentence, the sequence “qu” occurred twice so its bigram frequency is also 2. The
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unigram and bigram distributions are the putative probability distributions that generate the
unigram and bigram frequency counts in a corpus. In practice, these distributions are estimated

by relative frequency, i.e. dividing the observed counts by the total frequency mass in the corpus:

p(xi) = f(x;) / 2 f(x) (unigram distribution) (1.1)

p(xyy) = f(xy:) / 2 f(xy;) (bigram distribution) (1.2)

Thus, the terms p(x) and p(xy) will be referred to as the unigram and bigram probabilities,

respectively.

The coherence-based statistics which have been proposed include:

forward transitional probability FTP(x,y) = p(xy)/p(x) (1.3)

Saffran et al (1996), Aslin, Saffran, & Newport (1998)

pointwise mutual information PMI(x,y) = In (p(xy)/(p(x)p(y))) (1.4)

Rytting (2004), Swingley (2005)

raw diphone probability RDP(x,y) = p(xy) (1.5)

Cairns et al. (1997), Hay (2003)

Saffran and colleagues report that the forward transitional probability is motivated by the work of
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Harris (1955), who reportedly used a variant of it morpheme segmentation. It is simply the
likelihood of the next element, given the current one. Swingley (2005) proposed pointwise
mutual information, which is similar to forward transitional probability, except that it conditions
on the likelihood of both segments rather than just the initial segment; it could be thought of as a
measure of the association between the two phones. Hay (2003) observed that diphones which
were extremely rare were overwhelmingly likely to span word boundaries, and proposed that raw
diphone probability could be used as a fallback cue when no better information was available.

Swingley's (2005) model stands apart from the other coherence-based models on nearly
all the desiderata defined above: it has been implemented and tested on cross-linguistic data, and
it addresses the relationship between segmentation and lexical acquisition as related problems,
although as currently implemented it is not an incremental model. Thus, it worth reviewing this
model in more detail.

Swingley's model tabulates syllable co-occurrence statistics and postulates words based
on a combination of high frequency and mutual information. Strictly speaking, it is intended as a
model of lexical acquisition rather than word segmentation proper, but I have classed it with the
coherence-based models since it can be used to segment speech as well. The model works by
tabulating syllabic unigram, bigram, and trigram frequencies, as well as bigram mutual
information. “Likely word” percentiles thresholds are then defined as a function of number of
syllables. For example, likely bisyllabic words might be defined as those whose mutual
information is above the 70™ percentile and whose bigram frequency is above the same unigram

frequency percentile (Swingley considers a continuum of parameters in which the mutual
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information criterion is linked to the unigram frequency criterion.) Longer likely words were
favored by removing the sub-words they contained; for example if dangerous were deemed a
likely trisyllable it would explain the wordlikeness of its subparts danger and gerous, so these
would be removed from the likely bisyllable list.

In the best case (the 70™ percentile criterion in the previous paragraph) Swingley reports
about 80% of the likely words corresponded to actual words, in both English and Dutch. Of these
likely words, about 150-200 (Dutch-English) were monosyllabic, about 30-60 were bisyllabic,
and 2-6 were trisyllabic. Furthermore, he reports that many of the errors on bisyllables were pairs
of frequently occuring words.

One of the most interesting aspects of this study was the predominance of the trochaic
stress pattern in words extracted by the model. As reviewed earlier in this chapter, by 7.5 months
of age English-learning infants exhibit a trochaic bias, preferentially positing word boundaries at
the onset of stressed syllables. Swingley's model is provocative in illustrating that even an
imperfect word learning mechanism can explain the observed metrical segmentation bias in
English learning children (Jusczyk et al, 1999b) as a statistical generalization over the burgeoning
lexicon (Pierrehumbert, 2001), rather than as an innately specified trochaic bias (Cutler & Norris,
1988).

With respect to this point, there are a number of issues in need of clarification and future
research. For example, as reviewed above, the best evidence that we currently possess suggests
that infants at this age possess a vocabulary of around 40 words (Dale & Fenson, 1996), probably

too small to justify any strong generalizations about stress patterns which might be useful for
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word segmentation. This immediately raises the question of how many words is not too small to
justify this kind of statistical generalization."

There is an additional question, which is whether infants at this age might 'know'
significantly more words than the estimated 40 above. The best evidence we have is from
caregivers' reports about the words their infant understands. There are two reasons why this is
likely to be an underestimate. The first reason is that the infant may understand a word, but it
happens that no situation has arisen in which the caregiver saw and remembered positive
evidence that the infant understood it (e.g. by looking at the ball when the mother says ball). The
second reason is that an infant may 'know' a wordform (in the sense of recognizing it as a distinct
unit of their language) without understanding its meaning. For example, it is possible, even likely,
that English-learning infants know that the determiners the and a are words of English, without
understanding the subtle meaning contrast between these two words. Unfortunately, further
consideration of these issues is outside the scope of this dissertation, so for the present purposes,
I will assume that caregiver's reports (Dale & Fenson, 1996) are correct.

The general advantage of Swingley's (2005) model and other coherence-based model is
that it is founded on a well-established principle of gestalt psychology: listeners group perceptual
bits together based on some kind of perceptual coherence (Kohler, 1967). Thus, coherence-based
models enjoy a greater degree of a priori psycholinguistic plausibility than other classes

discussed here. The model is simple, intuitive, and makes generally reasonable learning

10 I cannot help but speculate on this point, in the hopes that an interested reader will take this question up for their
own research project. One way of framing this problem would be to estimate the probability of a word boundary
relative to the position of a stress, e.g. the probability of a word boundary immediately following a stress. Bayes'
theorem provides a way to estimate this from the opposite conditional probability, which can be estimated from
the budding lexicon via a generative model.
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assumptions. Furthermore, unlike connectionist models, in which the internal representational
structure is opaque, it is quite easy to “open up the hood” of a coherence-based model and
investigate what it knows.

There are three disadvantage of coherence-based models. First, they are not
probabilistically principled. In the case of Swingley's model in particular, the word discovery
procedure includes a variety of ad hoc heuristics, notably equating the frequency scale of syllable
bigrams with syllable unigrams, equating mutual information with these frequencies by mapping
everything to percentiles, and then requiring the same mutual information percentile threshold as
the frequency threshold. If the model is to be interpreted as a true model of what infants do, these
would have to be counted as innate bits of the child's knowledge — along with the ultimate
percentile criterion that the child adopts. Second, and more generally, coherence-based
approaches attempts to recover hidden structure (word boundaries) using an incidental statistic,
rather than modeling the desired structure explicitly. It only stands to reason that these models
would achieve a higher level of success if they tried to find word boundaries by looking for them,
rather than by looking for “coherence”.

Finally, with two exceptions, coherence-based approaches have not been satisfactorily
implemented. The first exception is Swingley (2005), as extensively discussed above. The other
exception is Cairns et al. (1997) who implemented the raw diphone probability proposal, and

found generally very poor discrimination of word boundaries from non-boundaries." These

11 Yang (2004) implemented Saffran et al's (1996) proposal, but adopted an extremely ungenerous interpretation of
its assumption. For instance, it posited word boundaries at local (token) minima in utterances. As Yang himself
points out, this makes it impossible for listeners to segment monosyllabic words, since two adjacent boundaries
cannot both be minima. As monosyllabic words form the vast majority of tokens in child-directed English, this
implementation dooms the Saffran proposal to failure before it begins.
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issues serve to highlight why it is important to implement a model and publish a working
implementation: the lack of rigorous and fair tests of coherence-based approaches is a major
impediment to evaluating these proposals on a fair playing field with the other models discussed

here.

Bayesian Joint-Lexical Models

The common thread underlying what I will refer to as Bayesian joint-lexical models is a
probabilistically principled framework for jointly segmenting a corpus and discovering the words
in it. The general idea in these models is to specify a probability distribution over lexicons given
a corpus, and then to select the maximum a posteriori (MAP) lexicon, i.e. the most likely lexicon
given both the observed data and any prior biases the learner may have as to likely lexicons.

The first such model was Brent & Cartwright (1996), which was cast in the framework of
information theory. More specifically, Brent & Cartwright described a model that operates
according to the Minimum Description Length (MDL) principle. The information-theoretic basis
for this formulation is that an (unsegmented) corpus can be represented (segmented) as a
sequence of codes (words) from a codebook (lexicon), in which the “cost” of a particular
representation is simply the cost of the codebook plus the cost of generating the corpus from that
codebook. The MDL principle states that the optimal code is one which allows for the smallest
total cost, which can be interpreted as the “shortest” description since the cost of a codebook is
simply its length and the cost of a segmentation is the length of the encoded corpus.

I classify this model as a Bayesian model, despite the apparent lack of an explicit prior
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distribution, because Goldwater showed in her (2006) dissertation that it is equivalent to a fully

Bayesian model. The argument is so well-stated that I simply copy it here:

The relationship between MDL and Bayesian inference becomes clear when we consider
results from information theory. In particular, information theory tells us that, under an optimal

encoding, the length (in bits) of an encoded corpus will be exactly —Ig p(d | h), where d is the

corpus and / is the codebook used to encode d. Therefore the optimal codebook % will be the one

that satisfies

A = argmin, len(encoding,(d)) + len(h)
= argmin,, —1g p(d | h) + len(h)

= argmax, p(d | h) - 27"®

In other words, MDL is simply MAP Bayesian inference with the assumption that the prior
probability of a particular hypothesized grammar (the codebook) decreases exponentially with its

description length (pp. 12-13)

In fact, I will not further discuss Brent & Cartwright (1996) or its successor Venkataraman
(2001) since they were superseded by the work of Goldwater and her colleagues.

Goldwater describes a two-stage generative Bayesian model. This model crucially relies
on the fact that for any given segmentation of a corpus d into a sequence of words w, there is a

corresponding lexicon (2, and frequency distribution Y. The workhorse of the model consists of

prior distributions on these two distributions. Specifically, the generator P, assigns probabilities
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to lexical types on the basis of their phonological form, and the adaptor P, assigns probabilities

to frequency distributions over lexical types. Thus, the language model is given by

p(wld)=Pu(0,) Py,(Y,) (1.6)

Goldwater then defines a search procedure to find the most likely segmentation under this
language model. In other words, this model measures the probability of a segmentation by the
prior probability of the lexicon it induces.

The hypothesis space for the search procedure consists of all possible word boundaries in
the corpus. The search procedure uses Gibbs sampling with simulated annealing Markov Chain
Monte Carlo (for a detailed exposition see Goldwater, 2006). What this means is that the
algorithm iterates through every possible word boundary in the corpus and considers two
alternatives: word boundary or no word boundary. Changes are accepted or rejected stochastically
according to whether they improve the prior likelihood of the segmentation, which can be
cleverly updated using only local information. Since the search procedure is not of central interest
here, and Goldwater goes to considerable lengths to demonstrate that it does not impose any
additional biases in the solutions identified, I omit any further description. The essential point is
that the search procedure finds or approximates the most likely segmentation according to the
model described above.

In the simplest model she describes, Goldwater uses a unigram model for the generator

P.. This model assigns a hypergeometric distribution over word lengths and a uniform
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distribution over all possible strings of a given length. Thus,

Po(w = piha...pn) = (1-ps) py * (12I')’ (1.7)

where ps is the probability of a word boundary and Il is the number of phones (so that IP!" is the
uniform probability of a phone).

In the simplest model, Goldwater uses a Chinese Restaurant Process (CRP(«x)) as the
adaptor. This is a probability distribution over partitions of the integers, but it can most easily be
described by a stochastic process. Imagine a restaurant with an infinite supply of tables, each of
which can seat an infinite number of customers. When a new customer comes in, they must
choose a table. They can choose to sit at any of the occupied tables, or to sit at the next
unoccupied table. Suppose further that the customer chooses occupied tables with a probability

that is proportional to the number of customers it already has, and they choose new tables with a

probability that is proportional to some constant «, known as the concentration parameter. For
the case of language, 'customers' correspond to word tokens and 'tables' correspond to word
types. Thus, words which are highly frequent are more likely to recur, but there is always some

probability of a novel word. Formally, let:

k type (index)
z; type index of the i token

Z, sequence of types observed before the i token
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K(z,;) number of types observed before the i" token

n*;  frequency of k™ type before the i token observed

x concentration parameter (1.8)

The probability that the i token is a member of the kth type is

p(z; =kl z,) = f(k)/G-1+) (1.9)

where f(k) = n*; for 1 <k<K(z.) and « for k=K(z,)+1 (i.e. a new table). (The term i- I+« is
simply the normalizing constant to make this a probability distribution.) The probability of a

sequence is simply the product of the probabilities of each element, given the previous sequence:

CRP(z,x) =[li<a p(z; 1 2.)

= I'(14+0)/T (n+x) - X [Tickry (7'5-1)! (1.10)

where I’ is the generalized factorial (gamma) function. Thus, the Chinese Restaurant Process
assigns probabilities to sequences of words based on the principle that words recur with
probability that depends on their frequency.

Although the technical machinery of this model is fairly involved, the intuitions are
simple: there is a prior distribution over wordforms (generator), and a prior distribution over

word frequency distributions (adaptor), and the optimum segmentation is the one which
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maximizes the joint probability of these two prior distributions. Wordforms are assigned a
probability, in most of the experiments she reports, based on a geometric distribution over their
length, i.e. words of length 3 are half as likely as words of length 4, which are half as likely as
words of length 5, etc... The adaptor favors Zipfian distributions in which a few elements occur

many times and many items occur few times (Baayen, 2001), as controlled by a hyperparameter

o. The model's search procedure is designed to identify the segmentation which maximizes the
prior probability of the corpus according to the product of these two prior distributions.

Goldwater and colleagues obtained two deep results with this model. First, she showed
that the basic model described above (with limited modifications to handle corpora with
utterance boundaries, i.e. unambiguous word boundaries) exhibited superior performance to that
of then-extant models of the same class, namely Brent (1999) and Venkataraman (2001). More
specifically, as shown in Table 1.5, she found that the search procedure used in these other
models does introduce unintended biases. She found this by showing that the solution her own
model found (bold) had higher probability than the optimum found by their own search

procedure (underlined):

Model True |None |Brent |Venkataraman | Goldwater
Brent 208.2 | 321.7 | 217.0 218.0 189.8
Venkataraman | 204.5| 90.9 | 210.7 210.8 183.0
Goldwater 2224 | 393.6 | 231.2 231.6 200.6

Table 1.5: Scaled negative log-likelihood (score) of segmentations
(columns) under different models (rows) (Table 5.3 from Goldwater,

2006, p. 119)
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(In Table 1.5, True refers to the correct segmentation, None to the segmentation in which only
utterance boundaries are marked, and Brent/Venkataraman/Goldwater to the optimum
segmentation produced by the model's search procedure. Higher probability means lower
negative log-likelihood.) This finding is important because it demonstrates how crucial the search
procedure is Bayesian models of this type, in particular how it may introduce biases which are
not explicitly included in the language model proper. More specifically, it illustrates that Brent's
(1999) model and successors are flawed precisely because of this search bias."

The other deep result is that undersegmentation is the empirical consequence for models
which assume that a word is independent of the word preceding it. Although this independence
assumption is obviously false, Goldwater showed that its falseness has consequences for word
segmentation. This is because language possesses a large number of collocations, multi-word
sequences that co-occur much more frequently than expected under independence; or in other
words, they behave like the model expects words to do. Thus, the model assigns higher
probability to segmentations in which collocations are segmented as a single word. In fact,
Goldwater showed this by extending her model to a bigram (hierarchical Dirichlet process)
model, which improved both precision and recall.

Another study in this general framework was conducted by Blanchard & Heinz (2008). In
terms of Goldwater's (2006) description, their work could be described as enriching the

generator. (The lexical generator that Goldwater adopted is phonologically primitive, assigning

12 The search procedures in Brent (1999) and Venkataraman (2001) make use of a number of approximations to
allow for a dynamic programming approach. This is the sense in which the explicit prior differs from what the
model does.
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equal probabilities to any lexical type consisting of the same segments, e.g. it assigns equal
probability to the real but not phonotactically equivalent words acts, asked, axed, cats, cast, scat,
stack, sacked, task, tacks, the phonotactically licit non-word atsk, and various phonotactically ill-
formed words such as [kste] and [@tks]). Blanchard & Heinz adapted the Brent's (1999)
incremental model to bootstrap its lexicon and lexical phonotactics off each other, achieving
generally superior performance relative to Goldwater (2006). Although this model presumably
suffers from the same search issue as Brent (1999), it is nonetheless informative in demonstrating
the utility and importance of phonotactics.

A related finding was reported by Johnson (2008) using Johnson, Griffith, & Goldwater's
(2007) adaptor grammar. Essentially an adaptor grammar is a generalization of Goldwater's
(2006) approach to probabilistic context-free grammars. In other words, an adaptor grammar
specifies a non-parametric Bayesian model over hierarchical segmentations (trees) of an input
corpus, rather than non-hierarchical (flat) segmentations. Thus, adaptor grammars provide for
models of richer linguistic structure, in particular syllable structure; but in terms of desiderata,

they are analogous to Goldwater's basic model.

In summary, all Bayesian joint-lexical models have a common Bayesian underpinning, are
implemented, achieve lexical acquisition by simultaneously optimizing word segmentation and
lexical acquisition (hence “Bayesian joint-lexical”’), and were not tested on cross-linguistic data
by their author.

Most Bayesian joint-lexical models are not incremental. One exception is Blanchard &
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Heinz's (2008) model, which is adapted from the earlier incremental model of Brent (1999)
model. As Goldwater (2006) demonstrated, in current-generation incremental models of this
type, the search procedure imposes substantial biases on the solution, over and above the model's
explicit priors. Thus, Bayesian joint-lexical models satisfy all of the desiderata, except perhaps
being incremental.

Beyond merely satisfying the desiderata, the Bayesian joint-lexical approach is
conceptually elegant. For example, the coherence-based approach attempts to identify word
boundaries by modeling an incidental statistic, rather than by modeling word boundaries directly.
In contrast, the Bayesian models offer a clear and principled probabilistic formulation of the
word segmentation problem. To be more precise, the Bayesian joint-lexical models adopt an
ideal observer approach, which describe the optimum solution. In other words, an ideal-observer
model is not primarily focused on how infants actually solve a problem, but on best solution
itself, given their capabilities.

It is worth dwelling on this point, since there are subtle differences between the ideal
observer approach and what I will argue is cognitively plausible. The major rationale behind the
ideal observer approach is that it cleanly separates the problem of defining an optimum solution
from the processing strategies that infants might make use of to identify that solution. The utility
of this distinction is apparent in the incisive comparisons it allows. The key example is
Goldwater's (2006) bigram/independence comparison, which showed that if infants make the
independence assumption, they are likely to undersegment — and in particular they are likely to

segment collocations as whole lexical items. Even though this comparison does not tell us how
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infants handle collocations, it clearly illustrates why collocations are a problem that need to be
handled. Moreover, it formally explains why many existing models tend to exhibit
undersegmentation, and it suggests one possible solution. These insights came from separating
the optimum solution from the strategy that the infant should adopt to find that solution.

The ideal observer approach is also suited to certain contexts in which the engineering
goal is to make maximal use of the data. For example, in natural language processing
applications, labeled data is typically scarce and/or expensive to collect. Thus, unsupervised and
semi-supervised methods are at a premium. One natural application would be developing
lexicons for automatic speech recognition for languages in which electronic text resources are not
available (Pierrehumbert, p.c.).

From this perspective, batch learning is somewhat less troubling than it otherwise would
be. Batch-learning, in which the model processes all of its input in one go, is clearly not how
infants acquire their language. But from an ideal-observer perspective, it doesn't matter how the
model takes in its output, all that matters is obtaining the optimum solution. Thus, whether batch-
learning is cognitively plausible or not is a question of perspective. The ideal-observer approach
is not focused on what infants actually do, but on what can be learned about what they must do
from the nature of the optimum solution. If one does not trouble oneself about how an infant
reaches the optimum solution, it is perfectly cognitively plausible to employ a batch-learning
method to obtain that solution. This dissertation, on the other hand, does concern itself with that
infants actually do. This is why I listed the incremental property as a desideratum, and why it is

not fully satisfying to simply accept claims to the effect that an equivalent incremental model
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exists.

However, there is another troubling aspect of the ideal observer approach: arguably it is
solving a different problem than people do. In these models, parsing decisions are always
lexically mediated. That is, owing to the 1-1 relationship between word boundaries and words,
placing word boundaries forces the model to learn or know a corresponding word. In contrast,
infants are known to posit word boundaries on the basis of prelexical factors such as stress
(Jusczyk et al, 1999b) and phonotactics (Mattys & Jusczyk, 2001), without recognizing the target
beforehand, or instantaneously learning it.

Put another way, the word-learning facts pose serious questions about what is 'optimal’'.
Joint-lexical models have an effectively infinite memory and word-learning capacity. As a result,
there is no need for such models to form generalizations about what cues and sequences are likely
to signal a word boundary. Instead, the model can simply learn a new word on-the-fly to explain
the word boundary; and if the initial guess turns out later to be probabilistically sub-optimal, the
model can revise it later, unlearning the incorrect target and learning a new target or targets. In
contrast, human listeners do seem to form generalizations about cues and sequences that indicate
word boundaries, rather than learning every novel word they encounter (Storkel et al., 2006).

In summary, the Bayesian approach, as developed by Goldwater's (2006) thesis and
subsequent publications, is a very promising avenue of research. Unlike both the connectionist
and coherence-based approaches, it puts the problem on a firm probabilistic foundation,
formalizing it as search for the maximum likelihood segmentation. This approach has yielded

important insights already, such as the observation that collocations cause undersegmentation in
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models which make improper independence assumptions. Moreover, the framework is both
modular and extensible, so that interested researchers can easily modify the (publicly available)
code to address their own research questions.

However, I have argued that existing Bayesian joint-lexical models are solving the wrong
problem. Word boundaries can only be identified on the basis of word recognition/learning,
which does not leave any room for phonological generalizations, such as the attested strategy of
positing word boundaries before stressed syllables (Jusczyk et al, 1999b). Of course, it is
logically possible to re-structure these models so as to incorporate phonological generalizations,
and the Bayesian formulation is so elegant and computationally attractive that ultimately this may
be the right theoretical road to take. But owing to this issue, I turn for the time being to the final

class of models, which attempt to segment speech by drawing on phonotactic regularities.

Phonotactic Models

The common properties of phonotactic models are that they model boundaries explicitly
using observable phonotactic statistics. Thus, these models are able to posit word boundaries in
novel phonological material without adding it to their lexicon, crucially exhibiting phonological
generalization. Moreover, all published phonotactic models have tested their model on non-
English data. However, as we shall see they may be cognitively implausible in other ways.

The first phonotactic models is described in Xanthos (2004), who defines and integrates
two phonotactic approaches which extend a basic n-phone model. The first builds on and

formalizes Aslin et al's (1996) insight that utterance boundaries contain distributional
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information that is informative for identifying utterance-medial word boundaries. Specifically,
Xanthos defines the “boundary typicality” of a segment n-phone as the ratio of the probability of
the n-phone utterance-initially (or -finally) to its context-free probability. Thus, n-phone which
occur more often utterance-initially than in other positions will have an utterance-initial
typicality greater than 1. The total boundary typicality of a sequence w w,...W,Wyi1..Wp, 1S
calculated by averaging the initial-typicality of w w,...w, and the final-typicality of wy.i..W2,. A
boundary is imposed whenever the utterance-typicality exceeds some threshold; Xanthos reports
results for the “natural” threshold of 1. Xanthos' second phonotactic method formalizes the
successor-count approach of Harris (1955). The (forward) successor count of an n-phone is
defined as the number of segments which can follow the n-phone (i.e. have been observed to
follow the n-phone in the model's previous input). Xanthos extends this to include the analogous
predecessor (backward successor) count, and imposes boundaries at local maxima of the
successor and predecessor counts. Xanthos reports results on a child-directed French corpus for n
of up to 5, finding unsuprisingly that the combined model (either mechanism can posit
boundaries) does better than either one alone.

The troubling aspect of this paper is its heuristicity; in other words, the lack of formal
motivation for most of the design choices. To choose but two examples, the choice to impose
word boundaries based on local minima of successor/predecessor counts is, as Xanthos himself
admits, a fairly arbitrary property of his model; and, while the utterance typicality measure is
clearly measuring something that is relevant to boundary detection, averaging the initial- and

final- typicality scores to get a grand total is hardly a principled model of utterance occurrences.
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Fleck (2008) addresses this latter issue, describing a model which explicitly estimates the
probability of a boundary p(b | [,r) between its left / and right r contexts. This model again builds
upon the insight of Aslin et al (1996) that utterance boundaries are informative for segmentation.
Fleck formalizes this intuition by modeling utterance beginnings and ends as the initial-state left

and right contexts. She further makes the following assumptions:

conditional independence given b  p(r,11b) =p(r|b)-p(Ib)

conditional independence given =b p(r, 1| =b) =p(r | =b) - p(l | =b) (1.11)

The first assumption is similar to a unigram phone model of word types, except that the left and
right contexts are not limited to single segments. The second is a phonological form of the
independence assumption discussed by Goldwater (2006). Using these assumptions, Fleck
derives a relatively straightforward estimate for p(b | [,r). She then describes a learning algorithm
which iteratively estimates the left- and right- contexts and their corresponding boundary
probabilities. In addition, Fleck uses a morphological post-processing algorithm which
distinguishes affixes from function words, and removes spurious boundaries around affixes. Like
Xanthos (2004), Fleck uses n-phones with n up to 5, on which I will comment more below.
Words in the corpus are then defined by their boundaries.

Like all previous models described above, Fleck runs her model on phonetic corpora
generated by mapping textual corpora with a canonical phonetic transcription. However, Fleck

goes beyond other work reported above in three ways. First, she runs the model on Spanish and
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Arabic corpora (with canonical phonetic pronunciations). Second, she explicitly compares her
model against Goldwater's (2006) model on the same datasets. Finally, she runs her model on the
Buckeye corpus (Pitt, Dilley, Johnson, Kiesling, Raymond, Hume, & Fossler-Lussier, 2007)
which includes natural conversational variation in pronunciation.

This has several advantages. Most immediately, Fleck finds that the phonotactic algorithm
exhibits loosely comparable performance on all three languages, with the best performance on
English, slightly worse performance on Arabic, and the worst performance on Spanish.
Moreover, she finds that this relatively simple phonotactic model's performance is competitive
with that of Goldwater (2006): the Goldwater model clearly exceeds Fleck's model in finding
word boundary recall (presumably owing to the relaxation of the faulty word-independence
assumption) but Fleck's model exceeds Goldwater's model in a variety of other measures and on
a variety of language data, such as boundary precision and overall lexicon identification.

Finally, and perhaps most interestingly, Fleck finds that both models exhibit degraded
performance on the Buckeye corpus, which contains natural phonetic variation such as simplified
consonant clusters. However, the phonotactic model's performance is not degraded as severely as
the Bayesian joint-optimization model. The likely reason for this is that Goldwater's model is
designed to model a single pronunciation for each word; so the input crucially violates this
assumption. In contrast, Fleck's model is primarily phonotactic, with the result that it can exploit
phonological generalizations to posit word boundaries rather than relying purely on the
assumption of an invariant realization of each word type. To the extent that word-boundary-

relevant phonotactics are preserved under conversational reduction, it makes sense that a
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phonotactic approach may fare better with conversationally reduced input than a Bayesian joint-
lexical model. This fact reinforces the point initially raised in the previous section, that the joint-
lexical models appear to be solving a different problem than infants do, owing to the lack of
explicit generalizations with regard to segmentation cues.

These phonotactic models have made important contributions to our understanding of the
acquisition of word segmentation. First and foremost, the work of Xanthos (2004) and Fleck
(2008) suggests that the phonotactic approach to word segmentation, despite operating on
language-specific representations, is a cross-linguistically robust strategy, giving loosely
comparable results across different languages. Moreover, Fleck's (2008) data suggests that the
phonotactic approach is very promising for coping with conversational reduction, presumably
because many of the phonotactic cues that are most informative for signaling word boundaries
are also least likely to be reduced.”

These phonotactic models, despite their advantages of being implemented, tested on
cross-linguistic data, achieving joint optimization of word segmentation and lexicon discovery,
and being somewhat incremental, nonetheless make somewhat cognitively implausible
assumptions. In particular, Fleck's assumption of conditional independence of sounds within a
word is strongly false, at least for unigrams; it implies, for example, that the word-initial sequence

[st] is just as likely as the word-initial sequence [ts], which may be true in some languages but is

13 This conclusion must be regarded with some care, since most of the segments in the Buckeye corpus were
identified by an automatic speech recognition engine. Although the entire corpus was hand-checked, it is clear
that the automatic components of this process introduced certain biases. For example, over 90% of the tokens of
the word the were realized with a high front vowel, which was the canonical pronunciation in the recognizer's
lexicon; whereas in my own speech, the is typically realized with some reduction, i.e. not a canonical high vowel.
If the recognizer similarly artificially preserved exactly those cues which are most useful for phonotactically-
based segmentation, this result would be an artifact rather than a finding of genuine theoretical interest.
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certainly false in general. This assumption is crucial to derive the probability of a boundary, and
thus, while necessary for the model to function, is cognitively highly implausible.

Similarly, both Xanthos (2004) and Fleck (2008) models are built on an underlying
database of 5-phone statistics, whereas there is no cognitive evidence that I am aware of that
supports the claim that infants attend to n-phones for n higher than 2. In fact, Pierrehumbert
(1994) showed that there is not sufficient data for learners to estimate correct statistics even for
trigrams, except for the most frequent ones. Moreover, owing to the Zipfian distribution of
linguistic events, the frequently occurring 4- and 5-grams are likely words themselves; and as
already discussed at length above, there are only a few such words that infants actually know. In
other words, the 5-gram model provides an implicit role for words in Fleck's model, which

somewhat subverts the spirit of a phonotactic model.

To summarize, then, phonotactic models show considerable promise in explaining the
prelexical segmentation abilities evinced by infants. The phonotactic approach has made
important contributions, such as illustrating its robustness to cross-linguistic variation and natural
conversational variation in pronunciation. However, existing models are either probabilistically
unsound or make cognitively implausible assumptions, e.g. modeling infant memories with 5-

phone models.

Summary

In summary, existing models of word segmentation can be divided into connectionist,
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coherence-based, Bayesian joint-lexical, and phonotactic model. While there is some variation
among published studies, there is substantial within-class consistency in whether models exhibit
the desiderata of cognitive plausibility I discussed above: whether the model is implemented,
tested on cross-linguistic data, provides for lexical acquisition (and if so, whether word learning
is treated as a joint optimization problem or as a related but logically distinct problem), and
finally, whether the model accepts incremental input, segmenting and learning as it goes. The
preceding discussion of model classes and desiderata is summarized in Table 1.6, with additional

comments in the final row:

connectionist |  coherence- Bayesian joint- | phonotactic
based lexical
implemented v V- v v
cross-linguistic v
lexical v’ joint v'related
incremental 4 v v
other *opaque *no phonlogical *n-phone
hidden unit generalizations
representatio
ns

Table 1.6: Evaluation of word segmentation model properties

The general conclusion to be drawn from this review is that progress has been made on many

fronts on the problem of word segmentation, but no model to date is fully cognitively plausible.
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The two most promising avenues for research are the Bayesian joint-lexical and phonotactic
models, since existing models satisfy most or all of the desiderata.

However, existing Bayesian joint-lexical models make the cognitively implausible
assumption that every word is learned the first time it is encountered, an assumption which is
currently built into the joint optimization strategy which is at the heart of these models.
Phonotactic models, at least in principle, are not forced to this assumption by their architecture;
however, existing models make other cognitively implausible assumptions, such as the
assumption that children attend to and store 5-grams.

Thus, my goal in this dissertation is to develop a more cognitively plausible phonotactic
model of word segmentation, and to develop a cognitively plausible account of the relationship

between word segmentation and word learning.

Two-stage framework

Current theories of word recognition (Vitevitch & Luce, 1998; Pierrehumbert, 2003) posit
two distinct levels of representation, a sublexical and a lexical level, with distinct attendant
processes. Theories differ as to the precise nature of the representations in both levels, but are in
general agreement that the lexical level involves representation of wordforms, whereas the
sublexical level involves representations that compose wordforms. Theories accordingly differ as
to the nature of sublexical processes, but are in general agreement that during lexical access,
stored wordforms compete to explain the input.

One of the crucial pieces for evidence for this distinction is distinct and sometimes
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opposing effects of sublexical probability and lexical neighborhood density. Sublexical
probability (referred to as phonotactic probability in the psycholinguistics literature, but called
sublexical here to distinguish it from lexical phonotactics) of a wordform refers to the probability
of its sub-parts, often operationalized as the sum of position-specific and diphone probabilities
(Vitevitch & Luce, 2004). Neighborhood density refers to the number of similar-sounding words,
often operationalized by the number of words differing from the target by the insertion, removal,
or mutation of 1 segment. For example, Luce & Pisoni (1998) found an inhibitory effect of
neighborhood density on word recognition (lexical decision), consistent with the prediction that
recognition is slower when there are more competitors. In contrast, Vitevitch, Luce, Charles-
Luce, & Kemmerer (1997) found a facilitory effect of sublexical probability on the same task.
Evidence for this distinction has been found in perception, production, recall, and learning
(Frisch, Large, & Pisoni, 2000; Luce & Large, 2001; Luce & Pisoni, 1998; Storkel et al, 2006;
Thorn & Frankish, 2005; Vitevitch, 1997; Vitevitch, 2002a; Vitevitch, 2002b; Vitevitch,
Armbruster, & Chu, 2004; Vitevitch & Luce, 1998, 1999).

I submit that the developmental facts reviewed earlier in this chapter are another argument
for this distinction. Recall that the developmental literature shows that by 10.5 months of age,
typical infants know 10-40 words, but use an array of metrical and phonotactic cues to segment
novel nonwords from unfamiliar contexts. These facts are inconsistent with the hypothesis that
word recognition is the primary locus of infants' word segmentation: infants are clearly able to
segment speech without recognizing all or most of the words they segment. These results can be

explained by the assumption that the primary locus of infant word segmentation is sublexical.
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Accordingly, I propose that segmentation is in fact the primary process associated with
the sublexical level of representation. This proposal is essentially Pierrehumbert's (2001) “Fast
Phonological Preprocessor (FPP)”, which “uses language- specific, but still general, prosodic and
phonotactic patterns to chunk the speech stream on its way up to the lexical network. By

integrating such information, the FPP imputes possible word boundaries to particular temporal

locations in the speech signal.” The architecture I assume is given in Fig. 1.4 with an example
prelexical
parser
lexical
access

below:

morpho-
syntactic
parse

ftarojpavieliginieckspartorxlopkavmiri

second-nom.s largest-
nom.s exporter-nom.s
cotton-gen.s in world-

prep.s
ftarojpavielicine ekspartior xlopkavmiir

Fig. 1.4: Two-stage speech processing framework

In Fig. 1.4, the bottom half is an example of the general architecture outlined in the top half. An

example of Russian input is given, first without the 'word boundaries' (spaces) to represent the
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input to the prelexical parser, then with 'word boundaries' to represent the output of the prelexical
parser, then with a morphosyntactic parse to represent the output of the lexical access
mechanism.

I further assume a continuity theory of development, in which these processes are
operative throughout the lifespan of a listener. Of course, as already pointed out, an infant
without a sizable vocabulary is at a considerable disadvantage. In particular, the absence of a
sizable vocabulary implies a greater dependency on sublexical processing than adults might
exhibit. Or in other words, the segmentation abilities that infants exhibit are primarily due to
sublexical segmentation.

Existing models of word segmentation have tended to focus on the problem itself, and the
related problem of word learning, without setting out clear and explicit assumptions about the
cognitive architecture that supports segmentation. As a result, previous research has not made a
point of focusing on the cognitive implications that stem from the segmentation algorithm. In
contrast, the two-stage architecture I adopt here allows for clear and relatively precise predictions
about the nature of processing that must occur at each level. This can be seen, I will argue, by
considering the range of possible error patterns that the sublexical segmentation mechanism

makes.

Error patterns
The first observation that can be made is that adults in general understand one another,

implying that segmentation errors are quite infrequent. Thus, it must be a property of the system
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as a whole that any system-internal errors are somehow filtered. More precisely, any incorrect
decisions introduced by prelexical segmentation must be corrected during lexical access.
Therefore, the error pattern exhibited by the prelexical segmentation process defines the problem
of lexical access. There are four logically possible error patterns: no errors, undersegmentation,
oversegmentation, and over+undersegmentation. I will assume the first case, of no errors, is
simply too much to hope for, and will not consider it further.

Undersegmentation is the pattern of error in which the segmentation mechanism
conservatively identifies word boundaries. In this case, the mechanism does not find all word
boundaries, but when it identifies a word boundary, it is rarely wrong. The cognitive implication
from this pattern of errors is that the lexical access mechanism can generally rely on word
boundaries discovered by the segmentation mechanism, but must discover some additional ones.
In this case, the primary contribution of the lexical access mechanism to word segmentation is to
further segment speech, presumably by matching stored lexical representations at onsets of the
partially segmented signal, and positing additional boundaries for unmatched substrings.

In contrast, oversegmentation is the opposite pattern of errors, in which the segmentation
mechanism aggressively identifies word boundaries. In this case, the algorithm finds virtually all
of the word boundaries, but also falsely identifies many non-boundaries as boundaries. The
cognitive implication from this pattern of errors is the lexical access mechanism can generally
rely on non-boundaries discovered by the segmentation, but must filter the incorrect word
boundaries. Then the primary contribution of the lexical access mechanism to word segmentation

is to eliminate spuriously posited word boundaries, presumably by simple virtue of lexical
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searches failing when they are initiated at false boundaries.

The final possible error pattern is over+undersegmentation, in which the segmentation
mechanism both fails to identify a significant proportion of underlying boundaries, and also
falsely identifies a significant proportion of non-boundaries as boundaries. The cognitive
implication is that the lexical access mechanism cannot fully rely on any decision made the
segmentation mechanism, and must be prepared to filter errors of both types. This implies a very
limited role for the segmentation mechanism, at best mildly improving the speed and accuracy of
the lexicon, and a correspondingly greater role for the lexical access mechanism.

This last pattern is unlikely to be the correct one, for two reasons. First, from the
standpoint of computational design, it is inefficient to have a distinct processing level that does
not make a meaningful and independent contribution to speech processing. This is not an
absolute argument, as it is not inconceivable that human speech processing is inefficient in this
particular way, but a growing body of literature suggests that the human speech processing
system is in general exquisitely adapted to solve the problems it is faced with near-optimum
efficiency (see Jurafsky, 2003, for a review).

Second, in this framework it must be the sublexical segmentation mechanism which
explains most of infants' segmentation abilities. If infants truly exhibited
over+undersegmentation in the course of word segmentation, it should be more apparent in the
developmental literature. While there are examples in which infants fail to segment, the
overwhelming majority of studies suggest that infants are quite good at word segmentation by

10.5 months. In fact, I am only aware of two negative results on word segmentation on natural
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stimuli from the infant's native language. The first is the 7.5-month-olds in Jusczyk et al (1999b),
who posit word boundaries at the onset of stress syllables even for iambic words like guitar — and
this kind of error is corrected by 10.5 months as shown by the same study. The other negative
results is from Mattys & Jusczyk (2001), who showed that infants failed to segment a novel word
when it was embedded in a context which failed to support parsing it out as a separate word —
arguably the correct behavior rather than evidence of improper segmentation. In other words, the
impressive segmentation abilities of infants are not consistent with any segmentation mechanism

that predicts a substantial proportion of both over- and under-segmentation errors.

Research questions

I have argued that existing models of word segmentation suffer from one or more
cognitively implausible assumptions. As I see it, the most promising class of models are
phonotactic, in part because the Bayesian joint-lexical models predict that infants will command
a sizable vocabulary as they begin to exhibit word segmentation. Therefore in this dissertation I
propose to develop a novel phonotactic model of word segmentation that I will refer to as
Diphone-Based Segmentation (DiBS), based on the finding of Mattys & Jusczyk (2001) that
infants attend to the relative frequency with which diphones span word boundaries versus
occurring word-internally. Then the goal of this dissertation is test this proposal as fully as
possible, and to generate a full developmental account of word segmentation and its relation to
word learning.

The general research strategy I will employ is to build a computational model which only
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makes use of the diphone cue. This model will be used to answer the following questions:

1) Proof of concept: Does diphone-based segmentation actually yield good segmentation?

2) Input robustness: How sensitive is the diphone-based segmentation to input assumptions?

3) Cross-linguistic robustness: Is diphone-based segmentation similar for different
languages?

4) Learnability: How can infants estimate the appropriate diphone statistics?

5) Toward word-learning: How can diphone-based segmentation facilitate word-learning?

Contributions

This dissertation makes a number of theoretical and empirical contributions to our
understanding of the acquisition of word segmentation. Perhaps most importantly, it develops a
full learnability account for effective prelexical segmentation using phonotactic properties that
are available on the surface, i.e. utterance-boundary distributions.

In addition, this dissertation is to my knowledge the first research on this topic which
focuses on the implications of the segmentation error pattern for bootstrapping lexical acquisition
in the context of an incremental model. In this vein, another important contribution is an explicit
and fair comparison across a range of coherence-based approaches, and the resulting finding that
without additional model structure, coherence-based approaches are not adequate to explain the
acquisition facts. Finally, this dissertation extends support for the claim that the phonotactic

approach to word segmentation is robust to language variation, by implementing a novel
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phonotactic model and testing it on English and Russian language data, as well as English data
with conversational reduction.

Beyond these theoretical contributions, this dissertation involved the creation of a large
scale (~35 million word) Russian phonetic corpus from a text corpus, and software for converting
Russian orthography to a phonological transcription and thence to a phonetic transcription. (The

software for generating a phonological/phonetic transcript can be obtained by contacting me.)

Structure of the Dissertation

The remainder of the dissertation is structure as follows.

Chapter 2 (“English”) begins by defining a baseline DiBS model which segments speech
using the statistically optimal diphone statistics (supervised learning). Then, in Corpus
Experiment I, the baseline model is trained and tested on a phonetic transcription of the British
National Corpus. Corpus Experiment II examines the effects of abstractness of the input
representation and conversational reduction processes by testing the baseline model on two
different transcriptions of the Buckeye corpus (Pitt et al, 207), one with conversational reduction,
and one with canonical transcriptions.

Chapter 3 (“Russian”) replicates Corpus Experiment I with Russian data. It begins by
describing relevant aspects of the Russian language. Next, it describes how a phonetic
transcription of the Russian National Corpus (RNC) was generated. Finally, Corpus Experiment
IIT applies the baseline DiBS model to the RNC.

Chapter 4 (“Learnability”) addresses the question of how the optimal diphone statistics
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might be learned in an unsupervised manner. Corpus Experiment IV begins by implementing a
variety of coherence-based approaches, such as the forward transitional probability proposal of
Saffran et al (1996); it is shown that these proposals achieve poorer segmentation than DiBS for
every threshold. Then, a bootstrapping theory is developed by which the diphone statistics can be
estimated either from a small lexicon such as an infant might possess (‘“Early Learner DiBS”) or
from raw utterance-boundary distributions, without any lexicon at all (“Prelexical DiBS”).
Corpus Experiments V and VI test these bootstrapping models on the English and Russian
corpora developed in previous chapters.

Chapter 5 (“Toward Word Learning”) addresses the question of how infants might learn
words from the output of the prelexical segmentation mechanism developed in the preceding
chapter. It is argued that lexical access is the locus of word learning, and so a theory of lexical
access is developed. Corpus Experiment VII tests the adult (best-case) scenario in which the
baseline DiBS segmenter is combined with the proposed lexical access mechanism operating
with a full lexicon; as well as related cases using the prelexical parser and/or no lexicon. A
theory of word-learning is proposed, whereby learners add wordforms that they access
sufficiently frequently and with sufficiently high confidence in the segmentation. Corpus
Experiment VIII test the combined bootstrapping model, in which word segmentation and word
learning are bootstrapped together. Finding that many spurious single-consonant words are
learned, Corpus Experiment IX re-tests the bootstrapping model with a single word-learning
constraint: a novel word must contain a vowel.

Chapter 6 (“Conclusions”) highlights the concrete progress this dissertation makes toward



our understanding of the acquisition of word segmentation. It also discusses various issues of

potential interest for follow-up.
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CHAPTER 2: ENGLISH
Abstract

This chapter begins by giving formal definitions of the word segmentation problem and
the baseline model referred to throughout the remainder of this dissertation. Next, it defines the
elements of signal detection theory that are used in this dissertation to analyze results. Then, in
Corpus Experiment I, the baseline model is applied to the British National Corpus, which is
mapped to a phonetic representation using the CELEX pronouncing database. Since this method
does not include pronunciation variation such as occurs in natural conversational processes,
Corpus Experiment II applies the baseline model to two different versions of the Buckeye corpus,
one in which every word is realized with a canonical pronunciation (as in Corpus Experiment I),
and a phonetic transcription of the same corpus that includes conversational reduction processes.
A common pattern of undersegmentation is found, and the cognitive implications for acquisition

are discussed.

This chapter defines a baseline implementation of DiBS and tests it in two Corpus
Experiments. The baseline model (hereafter referred to as baseline-DiBS) is a supervised model,
in the sense that it is given access to word boundary locations during training. There are two
motivation for beginning with a supervised model. First, its performance is an upper bound for
unsupervised models. Thus, if baseline-DiBS does not achieve a promising level of
segmentation, no unsupervised model will do better, and it could be concluded from these facts

alone that DiBS is not a tenable model of infant segmentation. Second, when learnability is
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considered in earnest in later chapters, it will prove useful to have a standard of comparison, and
the baseline model results herein will serve admirably.

Recall that the core idea of a DiBS model is to posit word boundaries based on their
probability given the surrounding context, i.e. p(# | xy). In the baseline model, this value is

simply calculated from the relative frequency in the training corpus:

baseline-DiBS: p# | xy) = f(#, xy) / f(xy) 2.1)

In terms of the desiderata identified in the previous chapter, baseline-DiBS is implemented and
incremental. In future chapters, I will apply baseline-DiBS to cross-linguistic (Russian) and
develop a theory relating it to /exical acquisition.

Baseline-DiBS as defined here has in principle been implemented already in Cairns et al
(1997). However, the phonetic corpus in that study used a different transcription system; in
addition, that study used a corpus of about 10,000 words, comparatively small by contemporary
standards. Corpus Experiment I replicates and extends the Cairns et al (1997) results by
implementing the same model on the corpus that will be used throughout this dissertation, the
100 million word British National Corpus. Before the experiment, I give a formal definition of

the segmentation problem.

Formal definition of segmentation problem

Formally a phrase p = (w, ¢, 11, R) consists of a sequence of a sequence of words w from
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a lexicon (2, their realization as a sequence of phone ¢ from an alphabet ¢ , a partition" 7 of ¢
into wordforms, and the realization R which relates each words to their corresponding forms
R[wi] = Py ... Priis1), Where 11(i) is the location of the i boundary in the partition. The notation
R[ -] is used to indicate that word realization is a random variable, i.e. without assuming that
words are realized invariantly as some canonical sequence of phones.

A segmentation o of a phone sequence ¢ is a partition. Note that there is a 1-1
relationship between segmentations and wordforms, but not between segmentations and words
themselves. This is for two reasons. First, a word may have multiple realizations as distinct
wordforms. For example, the word the may be realized with an interdental fricative onset, or the
fricative may be simplified to a stop. Second, the same wordform could be a realization of
multiple different words. For example, dear and deer could be realized as the same wordform

even though they are distinct words. A segmentation o of the phone sequence of a phrase p = (w,

¢, 1, R) is a true parse of ¢ if and only if o = 1. (This is the formal device which distinguishes
the problem of word segmentation from the problem of assigning wordforms to words.)

A hard parser is a function f: &° = 2*" which assigns a segmentation to a phone
sequence ¢, and a hard parse is the output of a hard parser. A parse distribution is a function p:
27" — [ which assigns probabilities” to hard parses of a phone sequence ¢ . A soft parser is a
function p: @ — IR** which assigns to each possible boundary in a phone sequence a statistic
which corresponds monotonically to the likelihood of a word boundary, and a soft parse is the

resulting output sequence. A decision procedure is a function @ : R*" = 2*" which maps soft

14 A partition of a sequence is an exhaustive decomposition into components, e.g. government — govern + ment.
15 The notation [ is used to refer to the unit interval [0,1], i.e. the domain of probabilities.
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parses to hard parses; in general the decision procedure will simply map the statistic to a word
boundary if it is above/below some threshold 0 (and otherwise to the absence of a word
boundary), in which case it will be called a decision threshold.

These formal definitions are illustrated in (8), which gives the true parse on top and

incorrectly oversegments actor beneath:

(8) w The SNL actor \ said \“The Bears”
R(wo) (1) R(w:) m(2)  Rw,) 13) R(ws;) m@d)  1w(5) R(ws)
¢ 0 i 3 s 3 n 3 ¥ &2 k t »» s 3 d d 9 b erz
soft .01 .99 .01 .01 .01 .01 .01 .99 .01 .55 .01 .99 .01 .01 .99 .01 .99 .01 .01 .01

decision threshold 0>.5?

had O 1 O O OO O01 O 10 1 0 O 1 0 1 0 0 O

segmentation o (1) a(2) o3) o) a(b) 6)

¢ 6 1 3 s 3 n 3 ¥ 2 k t >» s 3 d d 9 b erz

Note that the partitions do not include the utterance boundaries. It is a matter of formal
bookkeeping whether these are counted as part of the partition or not; but in practice, utterance-
initial and -final word boundaries will not be scored, so they are omitted here. Note further that

the same word he has two distinct realizations, as [01] and as [d9]. In practice, this will not
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occur in most of the corpora used in this dissertation. However, since it can occur it is important
to make room for it in this framework.

Informally, the segmentation problem is to recover the true parse, or failing that, a parse
that is as “close” to the parse as possible. The appropriate way to characterize this will in theory
depend on the kind of output the model produces. For example, a model which returns a full
parse distribution could be characterized as close to the true parse if it assigns most of its
probability mass to segmentations which share all or nearly the same boundaries as the true
parse. In practice, however, the simplest case to evaluate is a hard parse. Even for models which

assign a richer output than a hard parse (such as Fleck, 2008), it is convenient to map the output

of the model to a hard parse. Thus, I define the segmentation problem as defining an algorithm f

which accepts an input corpus C consisting of a sequence of phrases and returns a hard parse

f(C) of that corpus.

This process puts different models on a level playing field, by providing for well-defined
comparisons between model outputs even when the model assigns richer structure to the corpus
than is represented in a hard parse. The tool I and most other researchers use to compare hard

parses is signal detection theory, described in the next section.

Signal detection theory
Elements
Signal detection theory (Green and Swets, 1966) can be used to evaluate signal detectors

under conditions of a binary signal in noise with repeated sampling. The fundamental idea is to
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divide the world into four cases: whether the signal occurred (present/absent), and whether the
detector reported a signal (detect/not). Signal detection theory is appropriate in cases, such as
word segmentation, where the signal is relatively unlikely compared to its absence, because
percent correct can be misleading in such cases (cf. Appendix 2A).

Of course, the ideal detector would report a signal whenever one occurs, and report no
signal whenever the signal does not occur. But since noise is an inherent aspect of the detection
process, there is some chance that the detector will be wrong. It can be wrong in two ways: by
failing to report a signal when it occurred, and by wrongly reporting the signal when it did not
occur. Similarly, the detector can be right in two ways: by reporting a signal when it occurs, and
by failing to report a signal when it did not occur. These are the fundamental events of signal

detection theory:

e hit signal present, detector reports it

® miss signal present, detector doesn't report it

e false alarm signal not present, detector reports it

® correct rejection signal not present, detector doesn't report it

One way to compare two detectors is to compare the number of hits, etc.. on the same sample.
However, it is often desirable to compare detectors independent of the precise sample size
they were tested on. Thus, rather than comparing the raw counts above, detectors can be

measured using the following rates:
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e hit rate p(detect | signal) = hits / (hits + misses)

e false alarm rate p(detect | ~signal) = false alarms / (correct rejects + false alarms)
® precision p(signal | detect) = hits / (hits + false alarms)

® accuracy p(correct decision) = (hits + correct rejects) / all decisions

The hit rate, also called recall or true positive rate, indicates the probability of detecting a signal
when one has occurred. Precision indicates the probability that a signal has actually occurred,
given that it was detected. Although similar-sounding, these numbers reflect very different
aspects of a detector's performance, as illustrated in the example in Appendix 2A. The false
alarm rate is the probability of incorrectly detecting a signal when the signal is absent. Accuracy

is the overall rate of correct decisions.

Receiver Operating Characteristic (ROC)
In general, detectors report the presence of a stimulus whenever some measurement

exceeds (or falls below) a decision threshold. For example, a smoke detector might consist of a

device that measures air clarity and a clarity threshold 8. Whenever air clarity drops below 6, the
smoke detector starts making noise. It is useful to think of the threshold in terms of the

sensitivity of the detector: when the detector is too sensitive, it will start going off every time the
stove is turned on, but will at least reliably go off when there is a fire. Similarly, if the detector is

not sensitive enough, it will never false alarm, but it may not go off even when there really is a
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fire. The response of the detector across a range of decision thresholds is standardly summarized
using a graph known as the Receiver Operating Characteristic, which plots the hit rate against the
false alarm rate (Green & Swets, 1966). An example ROC curve is shown in Figure 2.1 for

illustration:
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Fig. 2.1: Example Receiver Operating Characteristic (ROC) curve

In this example curve, the ROC is represented by the points on the curve, and the diagonal line
represents a measure of chance performance. This is the rate of hits and false alarms that are
expected by simply detecting the signal randomly with some probability, i.e. independently of
whether the signal is there.

Informally, a detector is “bad” if the ROC curve stays close to the diagonal line, and it is
“good” if it stays far away from the diagonal. The ideal detector would contact the upper left

hand corner, i.e. achieving a perfect hit rate without every making any false alarms.
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Threshold selection

Choosing a threshold is often a value-laden choice. In particular, it depends on the
relative frequency and cost of each error type. For example, if misses are far more costly than
false alarms, it makes sense to make the detector fairly sensitive, even if this results in a higher
rate of false alarms. In some cases, it is possible to assess the cost of each error type in common
units (e.g. monetary units), thereby defining an objective function with a unique optimum.
However, it is often the case that the costs of each error type are incommensurable (see Appendix
2A for an example), or in the present case, depend in an as-yet-unknown way on the larger
system in which the detector functions. In these cases, there is no well-defined criteria by which
to distinguish one threshold as “optimal”.

In the absence of such a clear prior criteria, the most principled approach is to select the
decision threshold which minimizes the total number of errors. Equivalently this is the threshold
which maximizes the likelihood of making a correct decision, and is therefore known as the
maximum likelihood decision threshold (MLDT). In general, the MLDT will depend upon the
detector. However, the MLDT is predictable for the class of probabilistic detectors, which are

designed to report the probability of the signal they are designed to detect. In this case, the

expected MLDT is 6=.5. That is, the MLDT is the threshold at which the detector reports the
signal whenever the signal is more likely than its absence.
To anticipate briefly, this point will become important in Chapter 4, when I implement a

variety of coherence-based models. The DiBS models developed here are all probabilistic
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detectors in the sense above, and thus always have a predictable MLDT at 6=.5. In contrast, there
is no way to determine the MLDT of coherence-based models in advance, so threshold selection
must be regarded as a free parameter in evaluating such a model. Thus, there is a principled way

to select the decision threshold in DiBS, but not in coherence-based models.

Evaluating parses
A segmentation algorithm f can be evaluated on a corpus C by treating the presence of a

phrase-medial word boundary in C as the signal, and the presence of a corresponding boundary

in f(C) as reporting the signal. For most of the models developed in this dissertation, the primary
form of evaluation will be an ROC curve, together with qualitative analysis. These curves
summarize the ability of the model to find word boundaries for a wide range of decision
thresholds.

In some cases it will prove useful to compare models at a particular decision threshold.
For example, the Bayesian joint-lexical models output hard parses rather than soft parses, so their
performance cannot be summarized by an ROC curve. In such a case, the performance is
typically summarized by reporting the boundary recall and boundary precision. In these cases,
more detailed analysis is generally possible.

In particular, since the segmentation of a corpus uniquely determines the wordform
tokens it contains, it is also possible to determine the wordform recall and wordform precision.

This is done by treating the whole wordform in C as the signal, and interpreting the model as

detecting the signal if f(C) contains word boundaries on both edges of the corresponding
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wordform token, 1.e. if the wordform token is correctly segmented.
Since these wordform measures are based on tokens, it is further possible to determine the
lexicon recall and lexicon precision. This is done in existing models by treating the lexicon as the

set of wordforms that occur in the true parse of C, and the estimated lexicon as the set of

wordforms that occur in f(C). Then a type in the lexicon is treated as the signal, and the model is
interpreted as detecting the signal if the estimated lexicon contains the same wordform. (Note
that in existing models, the calculation of lexical recall and precision assumes a 1-1 relationship
between wordforms tokens and lexical types.)

As discussed in Chapter 1, I consider word learning to be a related but separate problem
from word segmentation. Thus, I do not report wordform or lexicon recall/precision in Chapters

2-4, where I consider the word segmentation problem specifically.

Formal definition of diphone-based segmentation

Recall that a segmentation algorithm f accepts an input corpus C of phrases p = (w, ¢,

7, R) and to each phone sequence ¢ assigns a segmentation o. The algorithm fis diphone-based
if and only if the presence/absence of a word boundary between the phones ¢y ¢ depends only
on ¢ and ¢y.

In practice, the segmentation algorithms developed in this dissertation will actually assign
soft parses, which are then mapped to a hard parse using a decision threshold. In principle, the
probabilistic information in the soft parse might be of considerable use to the downstream lexical

access mechanism. In particular, hard decisions will lead to hard errors, whereas probabilistic
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information might prevent unrecoverable errors. However, as remarked above, it is considerably
simpler to evaluate whether a decision is correct or not than to evaluate a probability distribution
over outputs. Thus, while it is consistent with the spirit of DiBS to pass a soft parse or other
richer structure downstream, this implementation of DiBS outputs hard parses for the sake of
easier evaluation.

The models defined in this dissertation are probabilistic detectors in the sense defined in
the previous section. That is, they attempt to calculate the probability of a word boundary
between two phones, given the phone identity. I will use the following notation to indicate this

probability:

p(# | xy) probability of a word boundary in the middle of the sequence [xy] (2.2)

Thus, diphone-based segmentation refers to a segmentation algorithm which posits word
boundaries in a phone sequence by modeling the probability of a word boundary between every

pair of successive phones.

Baseline model
The baseline model is simply the statistically optimum diphone-based segmentation
model; that is, the model which is equipped with the true underlying probability p of a word
boundary between every diphone xy that occurs in the corpus. For a given corpus C, this

probability is determined by the relative with which a word boundary occurs between x and y:
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baseline: pc# | xy) = fc(#, xy) / fe(Xy) 2.3)

where f{#, xy) indicates the frequency with which an utterance-medial word boundary occurs
between [x] and [y], and f{xy) indicates the total frequency with which the diphone [xy] occurs.
Note that the baseline model requires supervised learning, because to calculate the
diphone statistics according to Eq. 2.1, the model must have access to the location of utterance-
medial word boundaries, which is exactly what the infant is trying to estimate. Thus, as discussed
in Chapter 1, the baseline is not an appropriate model for infant acquisition. Rather, it is an upper
bound that describes the maximum level of performance that could be obtained by an
unsupervised method. The next section describes Corpus Experiment I, which establishes this

upper bound on the British National Corpus.

Corpus Experiment I: Baseline-DiBS on the BNC
The goal of Corpus Experiment I is to establish baseline performance for diphone-based
segmentation, both to serve as a proof of concept for the diphone-based approach, and as a
standard for future models. In the following subsections I describe the corpus (and rationale) and

the baseline model's performance on it.

Corpus

Corpus Experiment I is conducted by running the baseline model on a phonetic



BNC from its website (http://www.natcorp.ox.ac.uk/corpus/index.xml) is given below:

The British National Corpus (BNC) is a 100 million word collection of
samples of written and spoken language from a wide range of sources, designed to
represent a wide cross-section of British English from the later part of the 20th
century, both spoken and written...

The written part of the BNC (90%) includes, for example, extracts from
regional and national newspapers, specialist periodicals and journals for all ages
and interests, academic books and popular fiction, published and unpublished
letters and memoranda, school and university essays, among many other kinds of
text. The spoken part (10%) consists of orthographic transcriptions of unscripted
informal conversations (recorded by volunteers selected from different age, region
and social classes in a demographically balanced way) and spoken language
collected in different contexts, ranging from formal business or government

meetings to radio shows and phone-ins.

95

transcription derived from the British National Corpus (BNC, 2007)". A brief description of the

The paramount concerns in selecting the corpus for this experiment are that it be comparable to

other cross-linguistic corpora, sufficiently large as to avoid data sparsity issues, and

representative of speech.

16 Data cited herein has been extracted from the British National Corpus Online service, managed by Oxford
University Computing Services on behalf of the BNC Consortium. All rights in the texts cited are reserved.
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The BNC admirably fulfills the first two of these three criteria. In terms of size, the BNC
contains approximately 92,339,941 million words, about 10,000 times as large as the Bernstein-
Ratner corpus of child-directed speech used in most of the other segmentation models reviewed
in Chapter 1 (e.g. Brent & Cartwright, 1996). More data is better for a variety of reasons. Of
special importance here is data sparsity: the well-known Zipfian distribution of language implies
that most of the linguistic events of interest that occur are rare. It is perhaps underappreciated that
data sparsity is a serious issue even in phonology, even for diphone models. For example, the
Buckeye corpus (Pitt et al, 2007) currently comprises about 300,000 word tokens (30 times larger
than the Bernstein-Ratner). There are approximately 2,700 diphone types in the Buckeye; of
these, half occur less than 15 times, and 400 occur only once.

This is not just an implementation issue, but a real cognitive issue. No matter how large
the input sample, data will be sparse, and the amount and kind of input data determines the scale
of the data sparsity issue. Accordingly, it is important to select a corpus which is large enough to
model the data sparsity problem faced by infants. Back-of-the-envelope calculations, summarized
in Appendix 2B, suggest that (English-learning) infants hear somewhere between 5 and 10
million words in their first year. Thus, the BNC is of a sufficient size to provide for several years
of input. In contrast, the Bernstein-Ratner corpus represents about a morning of input. Since the
goal of Corpus Experiment I is to provide the best-case test of diphone-based segmentation, it is
important to use as large a corpus as possible so as to minimize the sampling errors that arise
from data sparsity.

In terms of comparability, a major goal of this dissertation is to test the phonotactic
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models developed in on cross-linguistic data. The Russian National Corpus (RNC) was explicitly
modeled after the BNC, meaning that these corpora are as similar as two corpora from different
languages and cultures could reasonably be expected to be. For example, the range of genres
represented is roughly equivalent. Nonetheless, there are cultural conventions which lead to real
differences in these corpora as well. For example, Russian commas are completely syntactically
determined in the modern language, e.g. obligatory before embedded clauses. English commas,
though clearly sensitive to syntactic structure, are not completely deterministic in the same way,
and at least in my own writing, appear to be directly sensitive to prosodic structure. Commas in
particular are a substantive difference because I assume they signal phrase boundaries; in fact,
comma placement appears to be sensitive to cultural/historical/stylistic factors (Pierrehumbert,
p.c.; Truss, 2003). This kind of cultural variation in corpus properties, though somewhat
regrettable, is unavoidable when comparing across languages. In short, although there are some
differences, the BNC and RNC are quite comparable.

Unfortunately, the BNC is not especially representative of speech, especially of the speech
that infants are exposed to. This is so for two reasons. First, the BNC is largely composed of
written sources, which presumably contains a richer vocabulary and wider variety of syntactic
constructions than everyday conversational speech. Second, and probably more significantly, the
phonetic transcription method used here projects each orthographic word to a single, canonical
phonetic realization. In other words, every word is pronounced the same way every time in the
phonetic transcript, whereas conversational speech contains a variety of pronunciation variation,

owing to various reduction and assimilatory processes (Johnson, 2004). In these two ways, the
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input corpus used here differs substantially from what infants are actually exposed to.

Since the primary goal of Corpus Experiment I is not to model acquisition per se, but to
serve as a proof of concept and standard for comparison, I deemed it more important to meet the
size and comparability criterion than the representative criterion. (It was not possible to meet all
three here as there is no large, freely available corpus which includes conversational reduction

processes.)

Phonetic form

A phonetic transcription of the BNC was generated by mapping orthographic forms to the
most frequent phonological form listed in the CELEX database (Baayen, Piepenbrock, &
Gulikers, 1995). For simplicity, stress was not represented directly, although it was represented
indirectly through its segmental reflexes (e.g. presence/absence of vowel reduction).

Word-external punctuation (commas, periods, semicolons, etc...) was mapped to phrase
boundaries. Word-internal punctuation was not treated as word boundaries, e.g. compounds such
as topsy-turvy were realized as a single word.

In developing the mapping software, I found that many out-of-vocabulary (OoV) word
forms were inflected variants of in-vocabulary words. For example, George was listed in
CELEX, but George's was not. Thus, I added minimal inflectional processing capabilities.
Specifically if the mapper found an OoV word and detected the past or plural/possessive
morphemes, it attempted to recover the stem; the word was then mapped as the pronunciation of

the stem plus the appropriate phonetic realization of the past/plural/possessive morpheme. This
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method eliminated 95% of out-of-vocabulary items, reducing OoV tokens to less than 1% of the
total corpus. The remaining OoV tokens were discarded.

Some words are in order about the CELEX phonetic representations. First, I used the
built-in DISC transcription system because it enforces a 1-phone-1-grapheme transcription
convention; e.g. distinguishing the diphthong [a'] from the vowel-vowel sequence [au], and the
voiceless alveolar affricate [¢] from the stop-fricative sequence [tS].

Second, the CELEX team did not represent contextual variation consistently across
segments. For example, contextual variation in the phoneme /1/ is represented with 3 different
allophones: word-finally as [R], deleted in non-final singleton codas, and as [r] elsewhere,

consistent with the British RP (Received Pronunciation) dialect standard, and illustrated below:

9) [r] wreathe riD

corrosion k@r5ZH

growths ar5Ts
[R] star st#R
null starchy st#J1

Similarly, /n/ and /1/ both have distinct allophones for when they occur as syllabic nuclei.
However, contextual variation between light and dark /1/ (Hayes, 2000) was not represented
allophonically. Similar contextual variation in the phoneme /t/, e.g. the systematic alternation

between an aspirated [t] in a singleton onset and unaspirated [t] in an [st] cluster was not
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represented. In summary, allophonic variation in CELEX sometimes contains positional

information, but not according to a consistent scheme, and not consistently across all segments.

Evaluation
The baseline model was trained and tested on the phonetic transcription of the BNC

described above. The baseline model assigns soft parses, which were mapped to hard parses

using a decision threshold 6, which was varied between 0 and 1. As discussed above, the baseline

model is a probabilistic detector, and therefore has an a priori maximum likelihood decision

threshold (MLDT) at 6=.5.

Results
Fig. 2.2 (below) shows the ROC for the baseline model as tested on the phonetic

transcription of the BNC. The MLDT is highlighted graphically with a red circle:
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Fig. 2.2: Segmentation ROC for baseline-DiBS

The performance at the MLDT (6 = .5) is given below in the form of Table 2.1:

Baseline model detects model not detect %

true WB 60.6 m (hits) 19.4 m (misses) 75.76% (hit rate)

not WB 8.9 m (FAs) 283.9 m (CRs) 3.05% (FA rate)
%0 87.16% (precision) 6.39% 92.41% (accuracy)

Table 2.1: Performance of baseline-DiBS at Maximum Likelihood Decision Threshold

The first two rows and columns (after the header) indicate the raw number of decisions. The last
row and column indicate rates, calculated by dividing the first entry of its row/column by the sum

of the first and second entries (total accuracy reported in the bottom right cell).

Discussion
The ROC curve shows that the baseline model exhibits three different regimes of
behavior. At lower thresholds, the model exhibits a near-floor (<5%) rate of false alarms with a

hit rate well above chance'. At higher thresholds, the model exhibits a near-ceiling (>95%) hit

17 Chance is defined in a signal detection setting as identifying the signal with some probability p independent of
any observable properties of the signal. For a given (x,y) pair on the ROC curve, the hit rate p=y that is expected
by chance is binomially distributed according to the false alarm rate x: yB ~ binom(x, B) where B is the total
number of boundary events. In the context of this dissertation, B is so large that almost any difference between x
and y will be significant, as illustrated by the following example. For 'large' B (>10) the Central Limit Theorem
(Lyapunov 1900, 1901) justifies the use of a normal approximation with u=xB, o=v(x(1-x)B). In the British
National Corpus, B=79962011 which is greater than 10 and therefore 'large'. Thus the 95% confidence interval is
x * 1.96 -Vx(1-x) WB = x + .3370/VB = x + .3370/V/B = .0305 = .00003769, so the observed hit rate of .7576 is
well outside this confidence interval. Moreover, since B is in general 'large’ in this way, I will assume for the
remainder of this dissertation that any difference between hit rate and false alarm rate is significant.
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rate with false alarms significantly below chance. There is also an intermediate range. The
MLDT occurs near the top of the first regime. This is the highest hit rate that can be obtained
without incurring a substantial false alarm rate. Thus, at the MLDT, overall decision accuracy is
very high, about 92%.

The first point that can be observed is that diphone-based segmentation is indeed a
promising approach, yielding an overall accuracy of about 92%. In terms of the two-stage
framework proposed in Chapter 1, this means that the segmentation mechanism can indeed
accomplish much of the segmentation work on its own — a desirable property if the proposed
segmentation mechanism is to explain the developmental fact that segmentation is evident before
a sizable lexicon.

A second important point, as discussed in Chapter 1, is that baseline-DiBS exhibits a
pattern of undersegmentation: better-than-chance detection of word boundaries, without a
substantial false alarm rate. To the extent that the baseline model is appropriate as an adult
model, this error pattern has implications for the lexical access mechanism. Specifically, lexical
access can generally rely on word boundaries discovered by the segmentation mechanism, but
must discover some additional ones. Then the primary contribution of the lexical access
mechanism to word segmentation is to further segment speech, presumably by matching stored
lexical representations at onsets of the partially segmented signal, and positing additional
boundaries for unmatched substrings. I will return to these points in Chapter 5, when I consider
word learning.

The reliability of diphones in the best case is an important proof of concept for the
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remainder of this dissertation. That is because the best case is an upper bound for the actual
performance that listeners could exhibit with this approach. Put another way, if the upper bound
is not much better than chance, then the cue is functionally useless. Of course, showing that the
upper bound is good does not explain human performance, or even demonstrate that humans
make use of this cue to solve the task; it simply shows that a diphone-based strategy would work

well, if listeners are equipped to use it.

Corpus Experiment II: Canonical and reduced speech
The input to the baseline model in Corpus Experiment I represented a relatively phonemic
transcription of English. Each word is realized invariantly in the transcript, with a single
canonical form listed by CELEX. Since this input representation differs substantially from the
kind of speech that listeners — in particular, infants — appear to get, it is important to determine
whether these differences matter. Corpus Experiment II investigates this question by running the
baseline model on a spoken corpus containing natural pronunciation variation, the Buckeye

corpus (Pitt et al., 2007).

Corpus

The Buckeye corpus website (www.buckeyecorpus.osu.edu) describes the corpus as

follows:

The Buckeye Corpus of conversational speech contains high-quality recordings


http://www.buckeyecorpus.osu.edu/
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from 40 speakers in Columbus OH conversing freely with an interviewer. The

speech has been orthographically transcribed and phonetically labeled.

The speakers in the corpus are age- and gender- stratified. Speech was collected in an interview
format, speakers were asked their opinions about a variety of local issues such as sports and
politics. The speakers were recorded and their speech was orthographically transcribed. The
orthographic transcription was used to generate a phonetic transcription in two steps. First, an
automatic speech recognition program was used to generate forced alignments between the
orthographic transcript and a phonetic transcript. Next, the phonetic transcripts were inspected
and adjusted by a research team (ongoing).

The result of this process was that the Buckeye contains two phonetic transcripts. One is
the “canonical” transcript, which lists the canonical pronunciation the forced aligner used to
detect wordforms. Because the aligner was designed to dynamically detect wordform variation,
and the research team also modified its output, there is an additional “reduced” version of the
corpus, which includes reduction processes and other pronunciation variation that is not present
in the canonical transcript.

The Buckeye corpus is supplied in the form of a sequence of files which represent
samples from the recorded conversations. The “canonical” and “reduced” corpora for this
experiment were generated by simply concatenating these files (with necessary text
preprocessing). In other words, the corpora used in this experiment collapse across speakers and

conversations that are distinguished in the corpus.
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It is important to note clearly how the 'reduced' Buckeye corpus differs from the CELEX
transcription used in the previous experiment. One kind of difference is that a systematic effort
was made to distinguish phone labels on the basis of phonetic evidence (Pitt et al, 2007). Thus,
phonetically-trained transcribers went through the entire corpus and approved of corrected the
machine-transcribed version. For example, a distinction was made between a full alveolar stop [t]
and a flap on the basis of closure duration and presence/absence of voicing. Similarly, a
distinction was made between nasalized and oral vowels on the basis of presence/absence of
nasal murmur.

In addition to the abovementioned examples, an effort was made to represent
conversational reduction processes such as deletion, manner assimilation, and the like. One
example frequently cited in the Buckeye manual is the underlying sequence and then, in which
the medial /d/ is elided, the interdental fricative simplifies to a stop, and the nasal gesture
perseveres through the resulting stop, yielding the surface string [©nn3n]. As a result of these
efforts, the Buckeye transcription is inarguably closer to representing certain kinds of contextual
variation present in natural speech.

However, the Buckeye corpus is fairly similar to the CELEX transcription in its treatment
of positional variation. Like CELEX, it distinguishes syllabic allophones of /I/ and /n/, and adds a
syllabic /m/ (as in prism). And, like CELEX, it does not distinguish aspirated and unaspirated
variants of /t/ — although it does distinguish both a flap allophone and a glottalized allophone.
Like CELEX, the Buckeye does not distinguish light and dark allophones of /I/. In other words,

some positional variation is represented allophonically, but not entirely consistently across
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segments.

A final caveat is in order: the Buckeye corpus may represent the worst-case scenario for
infants. This is so because in all languages which have been tested instrumentally, caregivers use
a special register known as infant-directed speech (e.g. French, English, Italian, German, and
Japanese: Fernald, Taeschner, Dunn, Papousek, de Boysson-Bardies, & Fukui, 1989; English &
Japanese: Werker, Pons, Dietrich, Kajikawa, Fais, & Amano, 2007; Mandarin: Papousek &
Papousek, 1991). Infant-directed speech can be broadly characterized by hyperarticulation (e.g.
expanded pitch range). Many of the phonetic reduction processes that occur in the ‘reduced’
transcription of the Buckeye are likely to be absent or less prevalent in infant-directed speech.

In summary, the Buckeye is generally more representative of the speech input that infants
hear than the CELEX-transcribed BNC. First, the Buckeye consists of spontaneous speech, like
most of the input to infants, rather than careful/read speech. Second, the Buckeye transcription
attempts to faithfully represent a number of types of contextual variation, including manner/place
assimilation, segment deletion, foot-medial flapping, and the like. Thus, Corpus Experiment II is

intended to test to what extent this kind of variation matters for DiBS.

Method

The baseline model was run on each of the subcorpora described in the previous section.
One model was trained and tested on the “canonical” version of the corpus, and the other model
was trained and tested on the “reduced” version of the corpus. All other details are as described

in Corpus Experiment I.
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Results

Figure 2.3 shows the ROC curve for the canonical and reduced corpora, respectively. Note
that these curves do not represent output from the same model that was tested on different
corpora. Rather, each curve represents the output from a model that was tested on the same
corpus it was tested on. As in Corpus Experiment I, the MLDT is indicated with a red circle. The
capital letters represent the performance of Goldwater's (G) and Fleck's (F) models on the
canonical transcript, and the corresponding lowercase letters indicate the same author's model's

performance on the reduced corpus.

® canonical

Hit rate

V reduced

0 010203040506 070809 1

False-alarm rate

Fig 2.3: Canonical and reduced speech on the Buckeye corpus

The performance of the baseline model at MLDT is compared against the phonotactic model of

Fleck (2008) and the Bayesian joint-lexical model of Goldwater (2006) on the same two



subcorpora (originally reported in Fleck, 2008) in Table 2.2:
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Corpus Canonical Reduced
Precision Recall Precision Recall
Goldwater (2006) 74.6 94.8 49.6 95.0
Fleck (2008) 89.7 82.2 71.0 64.1
Baseline-DiBS 86.8 75.9 82.0 66.6

Table 2.2: Comparison of segmentation models on the Buckeye corpus

Discussion

The results of Corpus Experiment II replicated and extended the findings from Corpus

Experiment I to a corpus containing natural conversational pronunciation variation. Specifically,

the baseline model was run on two different versions of the same corpus: in the “‘canonical”

transcription, every word type was realized with a single canonical realization, like in the

phonetic transcription of the BNC in Corpus Experiment I; whereas in the “reduced”

transcription, word types were transcribed including conversational variation in their

pronunciation. The first major result of Corpus Experiment II is that the baseline model exhibited

a very similar level of performance on the “canonical” corpus as it did on the phonetic

transcription of the BNC, namely it exhibited a pattern of undersegmentation. The other major

result is that the baseline model, like other leading models of word segmentation, exhibited

considerable degradation on the “reduced” corpus.

The finding of undersegmentation at the MLDT supplements the findings of Corpus

Experiment I. Recall that the BNC was selected as the standard corpus owing to its large size,
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and the existence of a comparable corpus in Russian. As a result, the BNC is somewhat lacking
in its representativeness, since it largely consists of written language. In contrast, the Buckeye
corpus consists of transcriptions of conversational speech. Thus, the results on the “canonical”
version of the Buckeye show that the pattern of performance on the BNC is robust across spoken/
written modality. This result suggests that undersegmentation is the general pattern
exhibited by diphone-based segmentation for any English corpus with canonically realized
wordforms. I will discuss the cognitive implications of this finding in more detail in the general
discussion; but for the present I turn to the contrasting pattern of results found for the “reduced”
corpus.

As evident from Table 2.2, the basic pattern exhibited by each model remains essentially
intact, but all models exhibit degraded performance on the reduced corpus. Since these two
corpora were identical at the word type level, the degradation owes specifically to the
conversational reduction processes described only in the reduced corpus. Thus, the assumption
that words are realized with an invariant pronunciation, shared by all previous models of word
segmentation and most experiments in this dissertation, has real consequences for their
performance. In particular, natural pronunciation variation has a negative impact on

segmentation performance for all models tested. A natural question is why this might occur.

One clue is given by the fact that Fleck's and Goldwater's models degrade “more” than
DiBS in going from the canonical to the reduced corpus: Goldwater's model loses about 25%
precision and Fleck's model loses about 18% for both precision and recall. In contrast, the

diphone model loses only 5% precision and 10% recall. Presumably the greater decrement in
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performance for these models owes to the assumption of a canonical, invariant wordform
corresponding to a word type, which is crucially violated in the reduced version of the Buckeye
corpus. However, the reason that this violation leads to the observed decrement is different for
each model.

In Fleck's model, there are actually two processes at work, the core phonotactic model,
and a morphological repair process. The core phonotactic model is presumably degraded by data
sparsity — that is, because conversational reduction processes create a larger, sparser, and
therefore noisier set of n-phones. In addition, the morphological repair process (which attempts
to distinguish affixes from function words) is presumably impaired for the same reason — the
same affix may be realized in a variety of ways, creating a greater data sparsity problem for the
repair process. However, there is nothing in Fleck's model which overtly militates against a larger
lexicon — the lexicon is simply the set of observed types.

In contrast, Goldwater's model is biased toward lexicons of a particular size. This stems

from the Chinese Restaurant Process adaptor, whose free parameter « assigns higher probability
to solutions with a particular frequency distribution. In fact, the very high recall and the very
poor precision are symptoms of the model's tendency to oversegment, caused in this case by
setting « too low, as I now demonstrate.

The first hint for this effect is that the boundary recall actually increases on the reduced
corpus. This means that the model posits more boundaries on the reduced corpus than in the
baseline corpus, which implies that the model is explaining the corpus with smaller units. The

use of smaller units (e.g. morphemes) has a characteristic effect on the frequency distribution:
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there are a smaller number of types, and they are used more frequently. For example, by positing
the three plural allomorphs /z/, /s/, and /1z/, the model saves itself from having to posit hundreds
of other plurals; the frequencies of the three plural allomorphs go up, and the stem frequencies
go up because now the singular and plural forms are counted as the same word type. This
behavior is caused by the concentration parameter, which explicitly biases the model toward a
particular frequency distribution. In this case, the solution the model finds is overly biased to
recycle existing units. Thus, while the model overwhelmingly finds linguistically meaningful
units, those units are not words, but some mixture of words and allomorphs.

More compellingly, the appropriate value for the concentration parameter can be

calculated and compared to the value actually used. One way to calculate it is to equate the

expected and observed probabilities of a novel word (a la Baayen, 2001): pexpeciea = /(N+x) =

Dobserved = Mhapax/ N WhETE 7hapax 18 the number of observed types N is the number of tokens. For the
canonical transcription of the Buckeye corpus, the appropriate value is « = 3249.57," quite close

to the value of « = 3000 that was actually used. However, owing to the implicit assumption of

invariant wordforms, Goldwater's model must treat pronunciation variants of the same word as

distinct word types. In this case, the appropriate value is o« = 18833.54", much higher than the
value actually used. Because the concentration parameter was not set as high as was appropriate,
the model was unduly biased to recycle existing material, resulting in aggressive
oversegmentation. It is this aggressive oversegmentation that explains the extreme drop in

precision between the canonical and reduced transcriptions in Goldwater's model. DiBS fares

18 Canonical transcript: fipapx = 3187, N = 166048
19 Reduced transcription: sy = 16915, N = 166048
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better in this context because it factors word form variation out of boundary identification.
Regardless of the precise value of the concentration parameter, the more general issue is

that the appropriate value for the concentration parameter is roughly equal to the number of
hapaxes in the corpus. The concentration parameter is a constant in the Chinese Restaurant
Process, whereas the number of hapaxes generally increases with the size of the corpus (Baayen,
2001). In other words, the Chinese Restaurant Process is not fully appropriate as a model of word
frequency distributions, because it is biased toward a fixed number of hapaxes, independent of
the corpus size. In contrast, DiBS makes no assumptions with regard to word frequency

distributions.

General Discussion

To summarize, Corpus Experiment I tested the baseline diphone-based segmentation
model on a phonetic transcript of the British National Corpus, and Corpus Experiment II tested it
on both a “canonical” version of the Buckeye conversational corpus, and a “reduced” version of
the same corpus which included natural pronunciation variation owing to conversational
processes such as lenition, assimilation, and elision. The baseline model exhibited a consistent
undersegmentation pattern in all three cases, with a near-floor false-alarm rate. The overall
performance of the baseline model degraded on the reduced version of the Buckeye corpus, a
property exhibited to an even greater extent by other leading models of word segmentation.
These results serve as an important proof of concept for diphone-based segmentation, showing

that the level of performance obtainable in the best case is quite high. Moreover, these results
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suggest that the diphone-based approach is fairly robust to the input representation, giving
comparable results across a variety of language modalities (spoken/written) and transcription

systems.

Cognitive implications

As discussed in Section 3.3.4, the predicted error pattern has significant implications for
the larger processes of lexical processing. This is because in a fully-functioning adult system, any
incorrect decisions made by the putative word segmentation mechanism must be caught and
corrected by downstream processes such as lexical access. The present model exhibited a pattern
of undersegmentation, meaning that the model filtered all or nearly all false alarms. As a result,
the downstream lexical access processes can confidently rely on the word boundaries supplied by
the segmentatiom mechanism, and need only “worry” about recovering additional word

boundaries (rather than checking the boundaries supplied by the segmentation mechanism).

Language generality

The results of the baseline model suggests that diphone-based segmentation is of
considerable utility in solving the word segmentation problem for English. This finding is
encouraging from a developmental perspective, because it means that a prelexical learner could
achieve near-adultlike performance on word segmentation, if they were somehow able to estimate
near-optimal entries in the parse table.

The significance of such a method, however, depends on whether it could be applied to
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word segmentation in a broad class of languages. If the proposed method only worked for
English, it would be an interesting curiosity. However, if the proposed method gives qualitatively
similar results for many other languages, this would show that it might provide the foundation for
a language-general, developmental account of word segmentation.

The first step toward testing the language-generality of a diphone-based approach is to run
the baseline model on one other language. In the next chapter, I take this first step by running the

baseline model on Russian data, under the most comparable conditions that can be obtained.

Conclusion

In this chapter, I gave a formal description of the word segmentation problem at a
categorical phonetic/phonological level. Next, I described a baseline segmentation model and a
framework for evaluating it. To determine the potential utility of diphone-based methods, I ran
the baseline model on a phonetic transcript derived from the British National Corpus. The results
of this baseline run showed that not only do diphones bear considerable information that is
relevant for word segmentation, but that the baseline model almost never identifies a word
boundary when there isn't one.

I then considered a number of problematic issues in the baseline experiment, such as the
relatively abstract character of the input, which may fail to reflect allophonic variation that is
relevant for word segmentation in human listeners. To address this issue, the baseline model was

run on the more speech-like Buckeye corpus. The general pattern of results was replicated,

20 Of course, in cross-linguistic research, there are always environmental and language-specific factors that cannot
be strictly equated across languages. I have made the utmost effort to make the baseline calculations as
comparable as possible between the two languages, as discussed in more detail in Chapter 4.
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although a detrimental effect of conversational reduction was observed for both this diphone-
based model and other extant models of segmentation. These results provide a clear proof of
concept for diphone-based segmentation, and suggest that it is robust to some of the variation
caused by conversational reduction. However, a number of questions remain, including whether
diphone-based segmentation is robust to cross-linguistic variation, or whether it is a strategy

which simply happens to work for English — the question to which I turn in Chapter 3.
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Appendix 2A

Suppose that the true incidence of HIV is 1/10000, and epidemiologists have created a
test which gives the correct diagnosis in 98/100 cases. That is, an HIV+ person is 98% likely to
be identified as such, and an HIV- person is also 98% likely to be identified as such. On the face
of it, 98% sounds very good. However, let us consider the precision of the test, that is, the
probability that someone has HIV, given a positive test result. Suppose that the test was
administered to 1,000,000 people. Then the number of HIV+ people is 100, and out of those 98
will be correctly identified as such. Similarly, the number of HIV- people is 999,900, and out of
these 19,998 will be incorrectly identified as HIV+. It follows that the probability that you have
HIV, given that the test says you have it, is 98/(19+19998) = .5%, far less than the overall
accuracy of 98%. In other words, the errors are drastically skewed: the vast majority of errors are
false positives, in which the test reports HIV+ when the person was actually HIV-.

Should epidemiologists modify the test to have a lower sensitivity? If this were done, the
false positive rate would decrease — a highly desirable outcome, because the emotional cost of
receiving an HIV+ diagnosis is very high, and no one should have to go through that unless they
really have HIV. On the other hand, the true positive rate would also be reduced, resulting in a
greater number of misses. The social cost of more misses is very high, as patients may go away
from the test believing they are safe, which could result in two kinds of costs. First, they may fail
to take precautions to prevent further spread of the disease. Second, delaying treatment is likely
to result in an overall more expensive and less effective course of treatment when the disease

eventually is discovered. Thus, changing the sensitivity of the test reduces some social and
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emotional costs, but increases others. The optimum value for this precision/recall tradeoff is not
objectively calculable, but depends on the relative emotional and social costs of false positives

Vversus misses.
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Appendix 2B

This appendix presents back-of-the-envelope calculations which suggest that an (English-
learning) infant hears on the order of 30,000 words per day during their first year of life. I have
estimated this value since to my knowledge there is no more relevant published research on this
question.

Some facts about speech are useful for this discussion. First, a fluent adult speaker
conversing at a comfortable pace will tend to produce somewhere between 3 and 5 syllables per
second (e.g., Kazlauskiene & Velickaite, 2003). Second, English word tokens contain an average
of 1.44 syllables as calculated by the number of vowel tokens in the BNC, divided by the number
of word tokens (tokens rather than types are the appropriate measure here because we are
interested in estimating number of words in speech).

Thus, the number of words per second can be estimated as:

(4 syl/s) / (1.44 syl/wd) ~ 2.76 wds/s (2B.1)

If we assume that a typical English infant hears the equivalent of 3 hours of continuous speech in

a day, the total amount of speech can be calculated as

(2.76 wds/s) - (60 s/min) - (60 min/hr) - (3 hr/day) ~ 29851.2 wds/day (2B.2)

which can be rounded to 30,000 wds/day or about 1 million wds/year.
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An alternative method for estimating this value begins with the average number of words
that a speaker of English produces per day. Matthias Mehl used an inobtrusive recording device
to record portions of the day-to-day interactions of several populations, finding that American
speakers produce an average of about 16,000 words per day (Mehl, Vazire, Ramirez-Esparza,
Slatcher, & Pennebaker, 2007).

If it is assumed that a typical infant hears all the output of a primary caregiver, plus
output from a combination of other caregivers which is approximately equivalent in volume to

the whole output from the primary caregiver, then we arrive at a figure of

(16,000 wds/caregiver - day) - (2 caregivers) ~ 32000 wds/day (2B.3)

which is quite close to the figure above of 30,000 wds/day.

Of course, these estimates are highly approximate. The actual amount of input that an
infant receives will vary from day to day and from infant to infant based on a broad variety of
factors not considered here. The figure of 30000 wds/day (1 MW/year) is intended as a 'ballpark'’

estimate, so that for most infants it is correct to within a factor of 2 or 3.
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CHAPTER 3: RUSSIAN
Abstract
This chapter describes the results from running baseline-DiBS on a phonetic transcription
of the Russian National Corpus (RNC). It begins with a description of the Russian language, with
particular reference to its morphology, phonology, phonetics, and orthography (the latter being

relevant to generating a phonetic transcript).

When she is born, an infant does not know which language she will be exposed to. It
follows that her learning mechanism must be able to handle any language she might be exposed
to. Thus, from a learnability perspective, one of the best tests for the validity of a learning
mechanism is its ability to handle cross-linguistic input.

In the case of word segmentation specifically, the majority of research on word
segmentation has been done with English-learning infants and/or English corpora. Thus, for the
models that achieve relatively good segmentation, including the baseline-DiBS model of Chapter
2, it is not usually clear whether their success owes to language-specific properties of English, or
to general properties of all languages. Testing on typologically diverse languages is important,
because it will determine whether a proposed segmentation mechanism is a valid language-
universal strategy. This dissertation takes a concrete step in this direction by testing DiBS on
Russian.

Below, I review the structure of Russian with an eye toward the factors which are likely to

affect word segmentation and DiBS in particular. These include most notable Russian's complex
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morphology, its paradigmatic stress system, its prosodic system, and phonetic assimilatory

processes.

Pycckuit A3pik (The Russian Language)

In this section, I will discuss the structure of Russian with an eye toward its linguistic
properties that are likely to substantially affect word segmentation. Broadly speaking, these
properties include Russian's complex morphology and its prosodic system. Thus, I will not
discuss syntactic and semantic aspects of the language except insofar as they impact word
segmentation, e.g. in word formation.

I will begin with an example that illustrates the flavor of the language:

(10) Buepa i OTKPbIBAJ CBOE 6onmoe OKHO,
vée'ra ja otkri val svo'jo bol Soje 0'kno
yesterday PRO.1s.nom open.imp-past.masc REFL-neut.s.acc big-neut.s.acc ~ window-neut.s.acc
a cefiuac s ero 3aKpoI0.
a sej Cas ja je'vo za kroju
and now PRO.1s.nom PRO.neut.3s close.perf-1s.nonpast

'l was opening my big window yesterday, but I shut it just now .'

Example (10) illustrates a number of important properties of the Russian language, including its

extensive inflectional system, the permissiveness of its word onsets (/v¢/, /kn/), and
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restrictiveness of its word endings (most tokens end in a vowel or sonorant). There is finally the
property that Russian is standardly written in Cyrillic, which does not impact word segmentation
proper but nonetheless affects the process by which the phonetic corpus is generated. In the

subsections below, I consider these subsystems of Russian in turn.

Morphology — Lexical base

Russian is an Indo-European language and as such shares a common historical origin with
English (Arlotto, 1972). This common origin is evident in a number of cognate or semi-cognate
forms such as noc¢/nocturnal ('night'/night-dwelling') and m'ed/mead (‘honey'/'honey-wine),
which illustrate the most common CVC pattern for word stems. In the course of its history
Russian has also experienced significant lexical borrowing from Ottoman Turkish (e.g.
karan'das 'pencil'), from German (e.g. volk 'wolf"), and most recently from English (e.g.
“komp'uter 'computer') (Robert Bird, p.c). In terms of their historical origins and lexical bases,
Russian and English are not especially dissimilar. Thus, the shared lexical base is not likely to

cause significant differences in segmentation between the two languages.

Morphology — Inflection
Several aspects of the Russian morphological system are of special interest for word
segmentation. One is the inflectional system, which has the following properties (Davidson, Gor,

& Lekic, 1997; Martin & Zaitsev, 2001):



- nearly all content words and many function words are inflected
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+ nouns inflect for case (see paradigm below), number (sing/pl), and gender

(masc/fem/neut)”

- adjective agree in case, number, and gender

 verbs inflect for tense (past/nonpast) and agree in person, number, and gender

+  syncretism is pervasive

The formal effect of the inflectional system is illustrated by complete masculine and feminine

possessive-adjective-noun paradigms (2) and complete past and nonpast pro-verb paradigms (3)

(Davidson et al., 1997, Gor, & Lekic, 1997; Martin & Zaitsev, 2001):

(11)  masc infls

Nom  -i-i--

Acc -i-j -

Gen -evo -evo -a
Prep  -om -em -e
Dat -emu -emu -u

Instr  -im -im -om

(12)  pers/no infls

Is ja-u

'my nice table’' Jem
MO XOPOIIHH CTOJ Nom
MOH XOPOIIHH CTOJI Acc

Moero xopoiero crona  Gen
MoéM xopoiueM ctone  Prep
MoeMy xopomemy ctoiny Dat

MOHM XOpPOIIHM CTOJIOM Instr

'PRO speak-nonpast'

sl TOBOPIO m

gender

infls

-a -aja -a
-a-gja-u
-ej -ej -1
-ej -ej -e
-ej -ej -e

-€] -€j -0

'my nice cat'

MOs1 XOpolast KOlKa
MOK0 XOPOIIYK0 KOLIKY
MOEeH XOpOIIEeH KOIIKH
MOeH XOpolleH KomKe
MoeH XopomieH Komke

MoeH XOpoleHd KOmKOH

infls ~ 'PRO speak-past'

on -1

OH TOBOpHJI

21 This is a slight simplification. Nouns belong to a declension class, which typically determines gender, with some
exceptions (for discussion see Corbett, 1982). Adjectives agree for gender rather than declension class.



2s
3s
Ip
2p

3p

ThbIl TOBOPpHIIb

OH IT'OBOPHT

MbI TOBOPpUM

BbI TOBOpHUTE

OHH TOBOPAT
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f ona-la oHa ropopuia
n ono -lo  OHO roBOpHIIO
pl on'i -li OHH roBOpHIH

As evident from (2) and (3) (which represent nearly the full range of regular inflectional

possibilities in Russian), most word endings are drawn from a small set of sounds. In particular,

most nominal/adjectival inflections end in either a vowel, or a sonorant ([m], [j]); most verbal

inflections end in a vowel, a sonorant ([1], [m], [j]) or one of two consonants ([t], or [§]); and

most function words also end in a vowel. In fact, the only words which systematically do not

exhibit this property are masculine nouns in the nominative singular and some third-declension

nouns, e.g. volk 'wolf'. Generally speaking it is only these cases that a stem-final consonant will

appear word-finally. In other words, the inflection system imposes probabilistic but quite strong

constraints on the distribution of phones word-finally.

This is a clear and significant difference from English, in which it is easy for words to end

with most consonant phonemes in the language, the tense vowels, and schwa. In other words, the

statistical signature of a word ending differs quite a bit between English and Russian, owing in

large part to Russian extensive inflection system.

Morphology — Word formation

Like English and German, Russian is relatively permissive in terms of combining
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morphemes to yield new words. For example, in both dostaprima’catel'ni 'sites of interest to
tourists' and zlo“radstvo 'pleasure at another's misfortune (lit. evil-happiness)' at least 3 pre-
inflectional morphemes can be discerned. Word formation is accomplished both by prefixes and
suffixes, and many prefixes derive historically from prepositions; moreover many such prefixes
continue to function as prepositions, e.g. po, do, ot, za, na, v, s, and k. This fact is of special
significance for word segmentation, since one and the same phone string is identified as
sometimes a word, and sometimes incorporated into another (following) word.

An example where this process is specially evident is in the formation of perfectives. In
Russian, aspect is realized lexically via aspectual pairs (Davidson et al., 1997; Martin & Zaitsev,
2001). Typically though not exceptionlessly, the perfective verb(s) stand in an apparently
derivational relationship to the imperfective; namely a perfective form is obtained by prefixing
the imperfective. For example, p'isat’ 'write.imp' can be prefixed to yield the (attested) verbs
dop'isat' 'finish writing (perf)' and zap'isat’ 'write.perf (for some purpose)'. In addition,
novel/unattested perfective verbs can easily be formed in this way, with the choice of prefix
conveying relatively subtle meaning contrasts. As stated above, do and za are highly frequent
prepositions which may occur as separate words orthographically. Thus, this process of word
formation is likely to cause difficulties for a segmentation algorithm whose performance is
scored according to whether it segments the prepositional forms yet does not segment the exact

same phoneme string when it occurs as a prefix.

Phonology & Phonetics — Segmental inventory
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Russian has a standard 5-vowel system: /a/, /e/, /i/, /o/, and /u/ (Davidson et al., 1997,
Martin & Zaitsev, 2001; Hamilton, 1980). As discussed in more detail in a later subsection, there
are several allophones of these underlying vowels which are triggered by stress and palatalization,
for example /a/ and /o/ normally reduce to schwa in the absence of stress.

Russian consonants are distinguished by place, manner, voicing, and the secondary
articulation of palatalization. The palatalization contrast is quite extensive in Russian; all
consonants have a soft (palatalized) and hard (unpalatalized) variant, except for the following

consonants, which are deemed inherently soft/hard owing to articulatory constraints (Hamilton,

1980):

 (soft)[j] front glide

y (soft)[¢] alveolo-palatal affricate

1 (soft) [8¢]* long alveolo-palatal fricative
11 (hard) [c] dental affricate

* (hard) [3] voiced retroflex fricative

1 (hard) [5] voiceless retroflex fricative

Phonology & Phonetics — Assimilation & Mutation

Just as Russian consonants differ in voicing, palatalization , manner, and place, so may

22 This is the sound that corresponds to the grapheme . For simplicity, I follow Avanesov (1967) in transcribing it
as [8¢].
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they assimilate to one another in one or more of these properties.

Russian obstruents devoice word-finally. Moreover adjacent obstruents may not disagree
in voicing, so that preceding obstruents assimilate to following obstruents in voicing (Avanesov,
1967; Hamilton, 1980; Hayes, 1984). Thus in vstretit'c'a the word-initial /v/ assimilates to the
following voiceless /s/, yielding a voiceless [f]. The phoneme /v/ is not fully an obstruent in
Russian however (for a recent discussion see Padgett, 2003), for it may disagree with preceding
obstruents in voicing, e.g. dver' [d'v'er'] 'door' vs. tver' [t'v'er'] 'town'. Aside from this peculiarity,
the voicing system of Russian is mercifully simple.

Palatalization assimilation in Russian is complex, variable, and under-researched.
Avanesov (1967) lists some general principles but ultimately lists rules by individual segments,
although contemporary phonological theory may allow a more incisive treatment by making
reference to the syllable (Ito, 1986). I will simply assume that non-labial consonants assimilate in
palatalization to following palatalized consonants (with the proviso that inherently soft/hard
consonants never assimilate), where labial consonants do not assimilate.

Avanesov (1967) also describes retroflexion assimilation by which underlying dental
fricatives (/s/, /z/) assimilate in retroflexion (becoming /§/, /Z/) to a following retroflex consonant
(/8/, 17/, 15¢/). He further describes a process of manner dissimulation in which underlying /g/
dissimulates to a fricative when it is followed by an underlying /k/ (palatalized or not). For
example, "l'ogko 'easy' is realized as [1'oxk3].

The topic of assimilation and other mutation processes in Russian is a complex one, and

the processes reported above are surely incomplete. However, the principal objective of this
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dissertation is a computational cross-linguistic study of the acquisition of word segmentation,
rather than a laboratory-phonological description of the Russian language. Thus I will assume for
the present study that the above processes describe enough of the phonology of Russian to

provide some insight on word segmentation.

Prosodic system — Syllable structure

While English and Russian both permit lengthy consonant sequences, syllable structure is
nonetheless quite distinct. Specifically, Russian is more permissive than English in the onset
position, but more restrictive in its codas. For the onset position, Russian allows up to 4
consonants, e.g. vstretit'c'a 'meet up', whereas English allows only 3, e.g. strict. In addition,
Russian onsets may contain stop-stop sequences, e.g. kto 'who', and even violations of the
sonority sequencing principle, e.g. [ba 'forehead-gen.s'. For the coda position, however, Russian
does not generally permit lengthy consonant sequences (Kochetov, 2002). In marked contrast,
English permits stop-stop codas, e.g. act, and regularly allows up to 3 consonants in word-final

codas, e.g. irked, milked.

Prosodic system — Stress assignment and vowel reduction

Russian and English share a number of similarities in their stress systems. In particular,
both languages have lexically contrastive stress, both exhibit extensive vowel reduction outside
stressed syllables, and in both languages, stress is conditioned by other morphological factors,

such as affixes which may induce stress on the preceding vowel (e.g. -ic: “hi.sto.ry/hi. sto.ric,
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-tel”: “dvigat’/dvi." ga.tel’ "'move/motor’).

Stress assignment in Russian depends not only the lexeme, but also varies according to
the paradigm. For example, “kniga 'book' always has stress on the initial syllable. In contrast,
“gorod 'city' normally has stress on the initial syllable, but in the nominative plural goro'da, it is
the final syllable that is stressed. Several distinct stress patterns are attested. Zalizniak (1977)

distinguishes the following 10 types, in roughly decreasing order of frequency:

a — stress always on the stem.

b — stress always on the ending

c — stress on the stem in sg., and on the ending in pl.

d — stress on the ending in sg. and on the stem in pl.

e — stress on the stem in sg & nom.pl., and on the ending in the other cases.
f — stress on the ending, except for n.pl.

b' — like b, but the stress is on the stem in instr. sg.

d' - like d, but the stress is on the stem in acc.sg.

f' — like f, but the stress is on the stem in acc.sg.

f" — like f, but the stress is on the stem in instr. sg.

In addition to assignment of primary lexical stress, Russian has an extensive system of
vowel reduction. The following summary refers to the literary standard (Moscow dialect) as

described by Avanesov (1967) and Hamilton (1980). Three “levels” of reduction are
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distinguished: tonic, pre-tonic, and unstressed. In the tonic (main stress) position, all vowel
contrasts are fully realized. In the pre-tonic position (syllable immediately before the main
stress), underlying back non-high vowels (/a/, /o/) are merged ([a]), and underlying front vowels (/
1/, /e/) are merged ([1]). In unstressed position (elsewhere), back non-high vowels are phonetically
reduced to [9] and front vowels may be phonetically reduced to [1]. For the purposes of /a/-/o/
reduction, an unstressed word-initial vowel behaves like the pretonic position, i.e. word-initial /a/
and /o/ are realized as [a].

Some secondary complication arises owing to the phonetic effects of palatalization. In
particular, when the back vowel /a/ is fully stressed and occurs between two palatalized
consonants, e.g. gul"'at’ 'walk, wander', it is realized phonetically as [a]. Similarly, when the
mid-front vowel /e/ occurs before a palatalized consonant it is realized as [e], but otherwise as
[3]. Moreover, when the back vowel /a/ follows a palatalized consonant (i.e. when it is spelled s),
it behaves like a front vowel for the purposes of vowel reduction, i.e. reducing to [i]/[1] in
pretonic/unstressed positions.

The full system of phonetic realizations is reported below with C indicating a palatalized

consonant:
Environment: C_ tonic pretonic unstressed
/i [1]
le/ [3], or [e]/_C [i] [1]
lal [a], or [2e]/_C
o/ [0] -
u/ [u]

Table 3.1: Russian vowel contrasts and reduction after palatalized consonant

23 In Modern Russian, the back mid-vowel never occurs after a palatalized consonant except under stress.
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Environment: elsewhere tonic pretonic unstressed
/il [i] .
e/ [3], or [e]/_C i il
Z Ej [a (3]
u/ [u]

Table 3.2: Russian vowel contrasts and reduction in non-post-palatal environments

In summary, the effects of stress on word segmentation should be broadly similar between
English and Russian, since the stress systems themselves are so similar. In both languages, there
is a single primary stress per content word and extensive vowel reduction. The location of
primary stress is variable in both languages, perhaps more so in Russian®, but not a fully reliable

cue to the location of a word boundary in either language.

Orthography

A final contrast between Russian and English is the orthography. While not strictly
relevant to word segmentation proper, the orthographic system of Russian was an important
factor in generating the phonetic transcription used in this and future experiments. The Russian

alphabet is relatively phonemic, in the sense that the phonetic form of a word can be predicted

24 A number of studies have documented stress regularities in English (Cutler & Carter, 1987; Kelly & Bock, 1988;
Cassidy & Kelly, 1991). In particular, Kelly and Bock (1988) found that stress patterns were distributed
asymmetrically in English according to grammatical category. In a sample of 3000 nouns and 1000 verbs, Kelly
and Bock (1988) found that 94% of the nouns were trochaic (strong-weak stress pattern), while 69% of the verbs
were iambic (weak-strong stress pattern). Conversely, 90% of the trochaic words were nouns, while 85% of the
iambic words were verbs. The greater variety of inflectional patterns suggest that the situation is more complex
in Russian, but to my knowledge, the comparable study has not been done.
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from the orthography if the position of the main stress (and the general system) is known. Like
English, lexical stress is not represented in the modern orthography.

One confusing aspect of Cyrillic, for eyes that are accustomed to the Roman alphabet, is
that many letters are shared, but some of those shared letters have different meanings. The sound
correspondences of the Russian alphabet are given below, subdivided by whether the letters have

the same meaning as in English, a different meaning, or are not similar to any English letter:

Similar Sound False friends |Sound Dissimilar Sound
a /al B vl 0 /b/
e e/ H /n/ r g/
K /k/ p It/ hi{ /d/
M /m/ y u/ K /3/
0 /o/ X Ix/ 3 /z/
c /s/ b hard sign U hl
T I/ Bl hard /i/ %} il
b soft sign 1 n
n Ip/
b It/
1 Ic/
q el
i I3/
10y /18¢/
) hard /e/
10 soft /u/
Pl soft /a/
e soft /o/

Table 3.3: Russian orthography and phonetic interpretation
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As described in an earlier subsection, Russian has an extensive secondary palatalization contrast.
While palatalization is without a doubt realized phonologically on consonants, it is realized
orthographically on vowels (and in many cases its clearest phonetic correlates are also signaled
by vowels). Specifically, the graphemes s, €, u, &, 10, and b indicate that the preceding consonant®
is palatalized; whereas the graphemes a, 9, b1, 0, and y, indicate that the vowel does not follow a
palatalized consonant (the grapheme b indicates the preceding consonant is unpalatalized).

There are some additional complications in the spelling system which arise from various
phonetic and historical factors. First, certain consonants are inherently palatalized (#, u, and 1)
or unpalatalized (k, 1, ), and in these cases, the soft/hard contrast on the vowel grapheme is

meaningless. Second, owing to the multiple waves of velar palatalization in the language's

history, Russian enforces several phonologically unnecessary spelling rules:

S-letter spelling rule: after m x m u and 1 write o if that syllable is accented and e if it is not
7-letter spelling rule: after k r x (velars) and m x m u (hushers) never write sl but always u

8-letter spelling rule: after k r x (velars), m x 1 u (hushers), and 1 never write si/1o but always a/y

These rules are phonologically unnecessary for hushers (inherently soft coronal fricatives and
affricates) and 11 (hard affricate) because they are inherently soft or hard (so the palatalization

contrast does not need to be signaled on the vowel). They are phonologically unnecessary for the

25 " may occur word-initially without a preceding consonant; the others indicate a preceding /j/ when no other C is
present.
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velars because they are obligatorily palatalized before /i/ and unpalatalized elsewhere.

Another historical/phonetic issue pertains to the sequence MvM where M is a mid-vowel.
This sequence is robustly attested in high-frequency and functional items, in particular in the
adjectival masculine genitive singular ending -ovo/-evo, in the pronominal masculine accusative/
genitive jevo 'him', and the word for 'today' sevod'n'a. Historically this sequence originated from
an underlying MgM sequence, and it is still spelled with the r (/g/) grapheme although it has
been pronounced with a /v/ for over a century (Avanesov, 1967).

A final historical event was the Bolshevik reform of 1918 (Izvestya, 1918),%® during which
two changes were instituted, one helpful for the present purposes and one unhelpful. Unhelpfully,
the grapheme & was abolished, thereby obfuscating the underlying back-front contrast between
the stressed mid-vowels /o/ and /e/ following a palatalized consonant. Helpfully, any remaining
fossilized word-final soft signs (») were abolished, so that the word-final soft sign assumed the
same meaning it had in other positions: a fully predictive signal for the presence/absence of an
underlying preceding palatalized consonant. (For third-declension nouns whose stems end in an
inherently soft, a word-final soft sign was retained to signal female gender; in addition, the soft
sign after the second person singular verbal agreement morpheme mb was retained. Fortunately,
both of these exception are phonologically vacuous since the soft sign cannot change the

inherently soft/hard status of the consonant it follows).

Implications for word segmentation

To summarize, the properties of Russian that seem most relevant for prelexical word

26 The Russian National Corpus contains materials from both before and after the reform.
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segmentation lie in its prosodic system and complex morphology. Prosodically, Russian allows
quite complex phonotactics (e.g. 4-consonant sequences word-internally) and has a complex
stress system, with lexically contrastive stress and extensive vowel reduction. However, Russian
and English differ in their syllabification; Russian is generally more permissive in the syllable
onset and less permissive in the coda than English. The syllabification differences are paralleled
by differences in the inflectional morphologies. The net effect in Russian is that the most
common word endings are drawn from a small subset of the total segmental inventory including
the vowels and sonorants, but almost none of the obstruents; in other words, there are
probabilistic, but quite tight constraints on the word-final distribution. In contrast, English words
can and do end in nearly all of the segments in the language; the word-final distribution is much

looser than in Russian.

Phonetic Transcription of the Russian National Corpus
This work is based on the University of Leeds copy of the Russian National Corpus

(http://corpus.leeds.ac.uk/ruscorpora.html). Thanks to work by Serge Sharoff, it provides a richer

representation than the parent copy hosted in Russia in that it is lemmatized and part-of-speech
tagged. Short subsections of this corpus were downloaded, preprocessed, and phonetically
transcribed serially, resulting in a phonetic transcription of the entire corpus. Preprocessing was
exactly analogous to the BNC, e.g. stripping word-external punctuation and de-capitalization.
The phonetic transcription process consisted of three sub-processes: recovery of phoneme string,

stress assignment, and phonetic processes. These processes are described in more detail below.
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Phoneme string recovery

As discussed in the orthography section above, Russian orthography is essentially
phonemic, with a few exceptions. Fortunately, most of the exceptions are phonologically
vacuous; one example is the spelling rules; another is the word-final mjakij znak (soft sign) on
the second-person singular nonpast verbal conjugation (e.g. roopuuib). Thus, phoneme strings
were generally created with the simple expedient of a translation table.

However, there are three major exceptions to the generally phonemic nature of Russian
orthography. The first exception is that orthographic MgM sequences (where M is a mid-vowel)
underlyingly represent MvM sequences (e.g. the [v] in jevo 'his' is spelled with the grapheme that
otherwise represents [g]). This exception was handled with a context-sensitive rewrite rule. The
second exception is that the post-palatal back mid-vowel (traditionally written &) is not
distinguished from the front mid-vowel; in the contemporary standard, both are written e. This
was handled by consulting a freely available electronic copy of Zalizniak (1977), which lists
whether a word contains an underlying &. The final exception is the palatalization system. In
general, palatalization is spelled not on the consonant it occurs on, but on the following vowel.
Palatalization was handled by 'moving' palatalization from the soft-series vowel or soft sign onto
the preceding consonant; there are additional subtleties to this process which need not detain us
here but are spelled out fully in the transcription code (which can be obtained by contacting me if
it is not available from my website).

In addition, I included a process of phonological liaison for the single consonant
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prepositions v, s, and k, which are typically syllabified with the following word.

Stress assignment

Stress is not marked in Russian orthography. (Thus, the phoneme strings in the previous
subsection do not include stress). However, as discussed in a previous section, stress conditions
vowel reduction, and is therefore crucial to obtain a phonetic transcription. Fortunately, some
stress information is listed in the electronic Zalizniak mentioned in the previous subsection. More
specifically, Zalizniak (1977) lists the position of the main stress in the headword (a canonical
realization of the lexeme for listing, e.g. the nominative singular for nouns and the infinitive for
verbs) and then indicates a letter code which corresponds to the stress pattern.

Correct recovery of the stress position requires three steps:

1. recognize the headword that corresponds to a token
2. recognize the inflectional properties of the token (e.g. for a noun, the case and number)

3. generate stress position using the listed stress code

Since the University of Leeds copy of the RNC is lemmatized, the first step is essentially
included in the corpus. However, steps 2 and 3 are not included in the corpus. Collectively, steps
2 and 3 amount to a full generative model of the inflectional system of Russian, which is itself a
near-dissertation sized project.

Rather than build such a generative model, I adopted a shortcut which was designed cover
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the most frequent cases. The shortcut is based on the fact that the two most common stress

patterns are fixed stem-stress (Zalizniak's pattern a) and fixed ending-stress (pattern b); most of

the other stress patterns are a variation on stem stress. Thus, instead of the full paradigm, stress

was assigned according to the following possibilities

word not listed:
pattern a (stem stress):
pattern b (end stress):

any other pattern:

stress assigned random to any vowel with equal probability
stress assigned to same position as headword
stress assigned to final vowel

default to stem stress

The resulting stress assignment does not do full justice to the richness and complexity of Russian,

but nonetheless achieves coverage of the most frequent cases. This is evident from counting the

number of lemmas with each stress patterns in Zalizniak (1977), as shown in Table 3.4:

Stress pattern | Number of lemmas Percentage of
lemmas
a 57449 84.1%
variant of a 5278 7.7%
b 4598 6.7%
variant of b 106 0.2%
other 911 1.3%

Table 3.4: Stress patterns in Zalizniak (1977) by number of lemmas®’

27 These counts omit lemmas which are not formatted consistently, and whose stress patterns are therefore difficult
to retrieve automatically from the electronic version of Zalizniak (1977).
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As shown in Table 3.4, stem-stressed (pattern a) and end-stressed (pattern b) collectively make
up over 90% of the lemmas in the dictionary. Together with simple variants of these (in which the
stress assignment will be correct for most all but one or two inflections), these lemmas make up
98.7% of the words in Zalizniak (1977). Thus, most known word types will be assigned the
correct stress pattern by this algorithm, with the caveat that since high-frequency words are more

likely to be irregular, the token accuracy may be slightly lower than the type accuracy.

Phonetic processes

The phonetic form of a word was derived by applying the phonological and phonetic
processes described in the summary of the Russian language above. These processes include
word-final devoicing, obstruent voicing assimilation, palatalization assimilation, place
assimilation, manner dissimulation, and vowel reduction, summarized below:

inflected form
retrieve headword phonological liaison
get stress code  -ovo/-evo repair
stress assignment palatalization assignment

stress position phoneme string

manner dissimilation
palatalization assimilation
retroflexion assimilation
word-final devoicing
voicing assimilation
vowel reduction

phonetic form



140

In summary, the phonetic form of an individual word is derived by creating a phoneme string
from the orthography, assigning stress from the headword and stress code in Zalizniak (1977),

and then applying hand-crafted rules to derive the phonetic representation.

Corpus Experiment I1I: Baseline-DiBS on the RNC
The preceding sections gave an overview of the Russian language and a phonetic
transcription was generated for the Russian National Corpus. In Corpus Experiment I1I, I applied
the baseline model developed in Chapter II to the Russian data. In other words, Corpus
Experiment III is a replication of Corpus Experiment I, but with Russian language data. Except

for the input corpus, every other detail of the model is the same.

Corpus
The Russian National Corpus is a large corpus of modern Russian,” which was explicitly

modeled after the BNC (http://www.ruscorpora.ru/en/corpora-intro.html). As such, it includes a

variety of material such as fiction, newspaper articles, and transcribed speech. In the phonetic
transcript created as described above, there are 33,876,860 word tokens, somewhat smaller than

the BNC but still quite large.

Method

The method was identical to Experiment I of the previous chapter, except the corpus was

28 It includes some materials from the previous century, such as short stories by Pushkin.
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different.

Results
The performance of the baseline model on the phonetic transcript generated from the
Russian National Corpus is shown below in the form of an ROC curve. The maximum likelihood

decision threshold is highlighted with a red circle, as in the previous chapter.

1 i | W
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0 01 02 03 04 05 06 0.7 08 09 1

Hit rate

False-alarm rate

Fig 3.1: Segmentation of baseline-DiBS on RNC

Discussion

The baseline model exhibits a pattern of undersegmentation at the maximum likelihood
decision threshold (MLDT), with a hit rate of 46% and a false-alarm rate of 1%. The overall
accuracy at the MLDT is 92%. For comparison, when the baseline model was run on the BNC,

the model (at the MLDT) yielded a hit rate of 75% with a false-alarm rate of 5%, and an overall
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accuracy of 92%.

One natural question is why the hit rate is so much lower for Russian than for English,
especially given that the overall accuracy was the same across both languages. One reason is that
word boundaries are generally harder to find in Russian because there are less of them, and there
are less of them because Russian words are on average longer than English words. In other
words, the sensitivity of the word boundary detector is lower for Russian than for English,
because there is in fact a lower percentage of true boundaries in the signal. Another reason may
be the frequent occurrence of prepositions which may also occur as prefixes; since there is a low
false alarm rate these items evidently do not cause DiBS to posit word boundaries when they
occur as prefixes, which means it is likely they do not cause DiBS to posit word boundaries when

they occur as prepositions either.

These results show that DiBS exhibits broadly similar performance on both the Russian
and English data. Namely, baseline-DiBS exhibits an overall pattern of undersegmentation (high
precision with better-than-chance recall) on both languages, with an overall accuracy of about
92%.

More broadly, these results provide support for the hypothesis that DiBS is a language-
general word segmentation strategy. This follows from the fact that Russian and English are
typologically distinct along two different dimensions. First, Russian is richly inflected whereas
English is not; second, English allows highly complex codas whereas Russian does not. As I

discussed in greater detail earlier in this chapter, these phonotactic and morphophonological
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differences are the ones most likely to matter for word segmentation. The fact that the algorithm
exhibits broadly similar performance — in particular, undersegmentation — despite these
differences is highly suggestive evidence that the algorithm would perform broadly similarly for
any language, meaning that it could be a valid acquisition strategy.

At the same time, it is important to acknowledge the limitations of this experiment. First,
Russian, like English, possesses lexical stress; second, and relatedly, both languages have
complex phonotactics at syllable and word onsets. It is therefore possible that the results of this
experiment crucially depend on the complex onset phonotactics of Russian and English. One way
to test this alternative interpretation would be to run the diphone model on a phonetically-
transcribed Japanese corpus, since Japanese has a relatively simple phonotactic structure.

An additional limitation of this study is the phonetic transcription process of the Russian
corpus itself. While I am proud to have accomplished the task of generating a phonetic
transcription of such a large corpus at all, there are several simplifying assumptions which
detrimentally affected the quality of the transcript. To select but two examples, the stress
assignment algorithm only allowed two options, fixed stress or end stress, whereas the actual
paradigmatic possibilities of Russian stress are much richer. Moreover, the palatalization
assimilation process is overly simplified, assuming that palatalization assimilation occurs for all
and only non-labials. Even with these simplifying assumptions, it was an enormous amount of
work to generate this corpus. Thus, it is highly satisfying to find that in broad strokes it replicates

the findings of Chapter 2.
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CHAPTER 4: LEARNABILITY
Abstract
This chapter develops a Bayesian learning framework for estimating the parameters p(# |

xy) for DiBS using a generative model p(xy | #). With the assumption of phonological
independence across word boundaries, the generative model can be estimated by factoring it into
the word-edge token distributions p(x < #) and p(# — y). Then, two specific learning models are
developed. The lexical learner estimates these distributions from a (possibly small) lexicon,
whereas the phrasal learner estimates them from phrase-edge distributions, i.e. without knowing
any words at all. It is shown that these learning models achieve performance near the level of the
upper bound of baseline-DiBS. For comparison, a range of coherence-based learning models are

implemented; it is shown that they fail to achieve good segmentation at any decision threshold.

Diphone models are prima facie appealing from a learnability perspective. One reason is
that they do not require infants to remember very much of the current input phrase in order to
make a segmentation decision; rather, the infant need only remember back one or two segments.
Another appeal is that because the diphone domain is small, there aren't very many of them and
they occur relatively frequently, which implies that comparatively little training data is needed to
estimate parameters. Thus, DiBS is a prima facie appealing theory of segmentation, and the
previous chapters provide empirical support by demonstrating that the statistically optimal
baseline model achieves high accuracy and a similar performance profile in both English and

Russian.
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However, baseline-DiBS is not a suitable theory of infant segmentation: to calculate the

optimal diphone statistics it is supplied with the location of word boundaries in the training
corpus, whereas finding these boundaries is precisely the segmentation problem the infant faces.
In other words, baseline-DiBS is supervised because it utilizes information that is not observable
to infants. This does not mean that DiBS itself is inherently supervised; rather, the challenge is to
estimate the relevant diphone statistics using only information that is available to infants. This
chapter takes up challenge. As a comparison, it also implements the coherence-based approaches

discussed in Chapter 1.

Estimating DiBS from observables
This section addresses the question of how DiBS' model parameters can be estimated
from information that is observable to infants. To reiterate briefly, the core parameters of DiBS

are statistics of the form

p(# I xy) 4.1

which indicate the probability that a word boundary (#) falls between the phones x and y, given
that they have occurred in succession. Thus, this section establishes a framework to estimate p(# |
xy) from infant-observable information. To put this discussion on a solid footing, however, it is

first necessary to discuss what information is observable to infants.
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What is observable?

I assume that infants can observe the following kinds of information:

context-free distribution of diphones
distribution of phones at phrase-edges
[frequency of words in their lexicon

context-free probability of a word boundary

Each of these is discussed in turn below.

Before this, however, a word of clarification may be in order. As stated in Chapter 1, |
assume that infants perceive speech categorically or have access to a categorical level of
representation in which speech is represented as a sequence of 'phones'. By phone I mean a sound
category which can be reliably distinguished by adults on the basis of acoustic/phonetic and
distributional evidence. For example, I would distinguish voiceless, unaspirated [t] from aspirated
[t'] as two distinct phones. In this particular case, there is an alternation between the two phones
that is conditioned by the prosodic context: when the phoneme /t/ occurs syllable-initially before
a vowel, it is inevitably realized as [t'] but when it occurs in a syllable-initial st cluster, the same
phoneme is inevitably realized as [t] (for discussion see Pierrehumbert, 2002). I assume that
infants perceive the difference between these two allophones of /t/. However, I do not assume that
they have analyzed them as two distinct allophones of the same underlying phoneme. Thus, [t]

and [t'] are reliably distinguished by English-speaking adults in production on the basis of
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distributional criteria (each is produced in their appropriate context).

I assume that infants track the context-free distribution of diphones in their input. This
assumption, which is shared in some form by all existing models of phonotactic word
segmentation, is motivated by evidence that infants attend to local statistical relationships in their
input (Saffran et al, , 1996; Mattys & Jusczyk, 2001).

By 'distribution of phones at phrase-edges', I mean in particular the probability
distribution over phones in the phrase-initial or phrase-final position. Of course, this assumption
presupposes that infants can distinguish phrase boundaries, which indeed appears to be the case,
as reviewed in Chapter 1 (Christophe, Gout, Peperkamp, & Morgan, 2003; Soderstrom, Kemler-
Nelson, & Jusczyk, 2005). As a consequence, for example, English-learning infants might learn
that phrases begin with [h] relatively frequently, but never with [g]; and conversely, that [g] is a
reasonably frequent phrase-finally whereas [h] is impossible in that position. This assumption is
motivated by pervasive effects in the memory literature of primacy and recency, i.e. showing that
listeners are better able to recall items which they heard first (primacy) or last (recency). That is,
given that infants track any distributions at all (a prerequisite for any phonotactic theory of word
segmentation), the most conservative assumption is that they track distributions over the
positions which are easiest for them to remember and encode, namely the first and last positions
in a phrase.

I further assume that infants track the relative frequency of words in their lexicon. There
are several reasons to believe this assumption is correct. First, there is a massive body of evidence

documenting demonstrating that adults attend to the frequency of words and other linguistic
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events in their input (for a review see Jurafsky, 2003). In the absence of compelling evidence to
the contrary, the simplest theory is that the mechanisms which cause frequency sensitivity are
present from birth (continuity theory of development). Second, although I am unaware of any
studies which specifically demonstrate word frequency effects in infants, there are a number of
studies that demonstrate frequency effects for other, closely related linguistic units. One such
study pertains to phonotactics: by 9 months of age infants prefer high-frequency phonotactic
sequences over low-frequency sequences (Jusczyk, Luce, & Charles-Luce, 1994). Another
pertains to phonetic categories: infants begin to exhibit adult-like”, language-specific
discrimination earlier for higher-frequency coronal stops than for lower frequency velar stops
(Anderson, Morgan, & White, 2003). The final studies pertain to grammatical categories: by the
second year of life infants use high-frequency function words to infer the grammatical category
of novel words (Mintz, 2003; Peterson-Hicks, 2006). Taken together, these studies suggest that
infants attend to frequencies of the many of the same linguistic events as adults do; in particular,
these studies suggest that infants know the relative frequencies of words in their lexicon.

Finally, I assume that infants can infer/estimate the context-free probability of a word
boundary p(#). To avoid terminological confusion, I will use the notation p(#) to refer to the
infant or model's estimate of the probability of a word boundary in the input, and p(#) to refer to

the true probability of a word boundary in the input. Note that p(#) is well-defined and can be

29 As a broad generalization, 7-month-olds exhibit a discrimination pattern that is essentially independent of their
language background (Kuhl, Stevens, Hayashi, Deguchi, Kiritani, & Iverson, 2006; Tsao, Liu, & Kuhl, 2006). By
the time they are 11 months old, infants' discrimination of sounds that are not contrastive in their native language
typically declines (Werker & Tees, 1984) whereas their discrimination of difficult native contrasts improves (for
exceptions and discussion see Best, McRoberts, & Sithole, 1988; Kuhl, Williams, Lacerda, Stevens, & Lindblom,
1992 ; Polka, Colantonio, & Sundara, 2001)
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calculated a variety of ways; for example, it is the inverse of the average word length. I will argue

that it is not difficult for infants to obtain a reasonably accurate estimate for }9( #) using
observable information and some assumptions about language.

For example, suppose that the infant is exposed to a language with one primary accent per
phonological word. In this case, the infant might observe that primary accents tend to be
separated from each other by some average number of phones. For concreteness, suppose that the
inter-accent interval is on average 4 phones. If the infant is willing to assume that there is one
primary accent per phonological word,” they are licensed to conclude that the average length of a
phonological word is 4 phones, and the probability of a word boundary is inversely related to this

length, i.e. p(#) = V4.

Another way that the infant might estimate ;.7( #) is with a prior distribution over the
number of words in a phrase. For example, spoken English phrases typically contain at least 1
and not more than 4 content words. For concreteness, suppose an average of 2.5 words per phrase
and an average of 7.5 phones per phrase; then the infant is licensed to conclude an average word
length of 3 phones, so that p(#) = 1/3. Alternatively, the infant may have a prior distribution over
word lengths, e.g. an innate preference for bimoraic forms*. Depending on how frequently the
language allows heavy syllables (so that a single syllable is bimoraic), the average word length

should be somewhere between 3 and 4 phones, yielding a p(#) somewhere between 1/3 and Y4.

30 Infants appear to acquire the rhythmic organization of their language as early as 6 months (Nazzi, Bertoncini &
Mebhler, 1998; Nazzi, Jusczyk, & Johnson, 2000); certainly English-learning 7.5 month-olds have acquired the
generalization that stressed syllables usually signal word onsets.

31 Such an innate preference is consistent with the observations that a number of phonological processes target
bimoraic units, including reduplication (McCarthy & Prince, 1986/1996) and nicknaming in Japanese (Mester,
1990; Poser, 1990; Rose, 2005).
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It is no coincidence that the estimates of these different methods do not differ very

substantially. Rather, there appear to be fairly tight constraints on }9( #). For example, Russian and
English exhibit average word lengths of 5.90 and 3.82, phones yielding word-boundary
probabilities of .17 and .26, respectively. This constrained range of variation can be thought of as
a consequence of the Zipfian distribution of language,* whereby shorter words are hugely more
frequent. That is, even though English and Russian allow very long words such as
antidisestablishmentarianism and dostaprimacatel'ni, words of this length are so rare that they do

not really make any difference to the average word length. The average word length, and therefore

p(#), is highly constrained. Moreover, an approximate estimate may be quite sufficient. In the
present case, the most important factor is whether the estimate is under or over MLDT. Given
that p(# | xy) is bimodally distributed with its modes at 0 and 1 (Hockema, 2006), small

variations in p(#) are unlikely to cause many word-spanning diphones to be mis-classified as

word-internal or vice versa. In summary, the assumption that infants can estimate p(#) is
motivated by the fact that there are reasonable ways infants could estimate this value; I will
therefore assume that infants can estimate this value correctly without explicitly modeling the

cognitive processes by which they obtain their estimate.

32 Technically, the mean of a distribution is only well-defined if the distribution is stationary, i.e. if different
samples are always drawn from the same distribution. This is general not true of Zipfian distributions, and in
particular not true for corpus samples. For example, the relative frequency of Ronald Reagan in newspaper
corpora of 1984 is much higher than on newspaper corpora of 2004, owing to the fact that Ronald Reagan was a
more salient public figure in 1984 than in 2004; the opposite applies to Britney Spears. In fact, even samples
from within the same corpus are not stationary. For example, the BNC contains articles from multiple genres,
including newspaper articles, medical reports, and patents. The relative frequency of different words will
naturally vary between these different genres; in fact there are likely to be differences in average word length
across these genres, e.g. owing to the high percentage of latinate technical terms in medicine. Fortunately, owing
to the central limit theorem (Lyapunov 1900; Lyapunov, 1901), the sample mean is bound to not fluctuate too
heavily, so it can be estimated.



151

Bayes' rule
Bayes' Rule allows a conditional probability distribution p(X | Y) to be re-written in terms
of the 'opposite' conditional probability p(Y | X). Formally speaking, Bayes' Rule falls out

straightforwardly from the definition of conditional probability (Manning & Schutze, 1999):

pX 1Y) =pX"Y)/p(Y)

=p(X)-p(Y I X)/p(Y) 4.2)

Thus, on the surface Bayes' Rule is simply a consequence of the concept of conditional
probability.

The immense utility of Bayes' Rule becomes clear when Y is interpreted as some set of
data to be explained, and X is interpreted as a hypothesis space. To make this point explicit,
Bayes' Rule is re-written below, with Hyp standing for a hypothesis space and Data standing for a

data set:

p(Hyp | Data) = p(Hyp) - p(Data | Hyp) / p(Data) (4.3)

Re-interpreted this way, Bayes' Rule provides a way to assign probabilities to hypotheses
(Manning & Schutze, 1999). This is desirable from a theoretical standpoint, since the scientist is

obligated by the quest for truth to seek hypotheses which are more likely. And to the extent that
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learning is like doing science, Bayes' Rule is similarly of utility to the learner, by allowing them
to determine which explanations of their environment are good ones.

The crucial ingredients of a Bayesian model are given in Equation 4.3. The term p(Data |
Hyp) is called the data model or sometimes simply a generative model (Manning & Schutze,
1999): it assigns probability mass to the data set given some hypothesis. The term p(Hyp) is
called the prior distribution (Manning & Schutze, 1999): it assigns probability mass to different
hypotheses based on some prior criterion such as simplicity. The final term p(Data) is typically
dispensed with, since in practice it functions as a normalization constant whose purpose is to
ensure that the posterior distribution p(Hyp | Data) is a true probability distribution (Manning &
Schutze, 1999).

The practical functioning of these components can be illustrated with the classic example
of an unfair coin. Suppose that the learner has observed 8 heads and 2 tails, and is attempting to
infer the underlying distribution of heads and tails. (The linguistically minded reader can easily
turn this into a language learning problem by interpreting heads as, for example, observations of
a surface Verb-Object constituent order, and tails as a surface Object-Verb order.) Further
suppose that the learner's model is that coin tosses are independently and identically distributed
according to a Bernoulli process with parameter py, representing the underlying probability of a

'head' outcome, so that the appropriate data model is the binomial distribution. Finally, suppose

that the learner considers the hypothesis space of all multiples of .1 for py, i.e. Hyp = {pu=.1-nl
0<n<10}.

The data model can now be used to assign probabilities to the observed data, given some



153
hypothesis. For example, consider the hypothesis py = .5. The binomial distribution tells us that

the probability of observing 8 heads and 2 tails, given that the probability of a heads is .5, is

p@8@H,2TI|py=.5) =binom(8,2;.5)
= 10Cs (.5)'(1-.5)°

~ .0439 4.4)

where 1(Cs ('10-choose-8') is the combinatorial function. In contrast, the hypothesis py = .8

assigns higher likelihood to the data:

p@8@H,2TIpy=.8) =binom(8,2;.8)
=10Cs (-8)8(1'-8)2

~ 302 4.5)

The hypothesis py = .8 has a special status with respect to these data — it is the observed relative

frequency of heads, i.e. the number of heads divided by the total number of observations: 8/(8+2)
= 8/10 = .8. It is therefore the hypothesis which assigns maximal probability to the data set*, and
for this reason the relative frequency is called the Maximum Likelihood Estimator (MLE) for py

(Manning & Schutze, 1999).

33 This can be seen from the fact that the derivative of the log-likelihood function at .8 is 0:
d/dp In blnom(8’27 p)lp:.x = d/dp In (10C8 (p)x(l_p)z)\pz.x = d/dp ln(IOCS) +81In p+ 21n (l_p)\,ﬁx = 8/p - 2/(1_p)\pz.x =10-
10 =0.
The logarithm is an increasing function, so a maximum at the log-likelihood must also be a likelihood maximum.
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Up until now I have omitted mentioning the prior. The prior distribution represents the
learner's biases in terms of hypotheses. For example, a reasonable bias in the context of coin-
tossing would be to strongly prefer the hypothesis that the coin is underlying fair. This might be
encoded by assigning a prior probability of .99 to the hypothesis that the coin is fair, and a prior
probability of .001 to every other hypothesis in the hypothesis space. The product of the prior and
the data model constitutes the joint distribution over hypotheses and data. For the two hypotheses

under consideration, the joint probabilities are shown below:

pBH, 2T py=.8) =p(pu=.8)-p8H,2TIpy=.8)
~ 001 -.302

~ .00302 (4.6)

pBH, 2T Apy=.5) =ppu=.5)-pBH,2TIpy=.8)
~.99-.0439

~ .0435 “4.7)

Now, the axioms of probability require that p(Hyp | Data) sum to 1. This can only be true if p(8

H2T)= Zp ey p(pu) -p(8 H, 2 T'| py), which is a constant. It follows that the relative likelihood

of these two hypotheses does not depend on p(8 H, 2 T) since it is a constant.

Accordingly, if the learner were forced to select a single hypothesis, the more likely
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hypothesis is that the coin is fair. This conclusion is licensed by the fact that although the unfair
hypothesis assigns a higher likelihood to the data, the hypothesis that the coin is unfair is a priori
extremely unlikely. In this way, the combination of the prior and data model end up selecting the
'best' hypothesis through a combination of factors, including its ability to explain the data (data
model) as well as a priori theoretical grounds of simplicity (prior).

A final property of Bayesian models can be illustrated by considering the related case in
which the learner has now observed 80 heads and 20 tails. Keeping the prior and hypothesis

space the same, the new probabilities are:

p(80H, 20 T A py = .8) =p(pu=.8)-p(80H, 20 T | py = .8)

~ 9.93e-5 (4.8)
p(80H, 20 T A py = .5) =p(pu=.5)p80H, 20 T|py=.8)

~ 4.19¢-10 (4.9)

While the relative frequency of heads and tails has stayed the same, the data are now
overwhelmingly more consistent with the MLE hypothesis rather than the fair coin hypothesis. In
other words, when there is not a lot of data, the prior exerts an overwhelming effect on the
interpretation. When there is a lot of data, it will overwhelm even the strongest prior, provided it
allows (assigns nonzero probability mass to) the hypothesis at all.

In the models discussed below, the prior probability will be the context-free probability of



156
observing a word boundary, and the data model will model the probability of a diphone, given
the presence of a word boundary. In other words, applying Bayes' Rule to the basic diphone

equation yields the following equation:

p(# 1 xy) = p(#) - p(xy | #) / p(xy) (4.10)

However, unlike the Bayesian model scenario discussed above, in which the data was fixed and
the goal was to select the optimum hypothesis from among a large hypothesis space, it is the data
(diphones) which vary here, and the hypothesis space is simply the binary choice between the

presence and absence of a word boundary.

Phonological independence

Bayes' Rule provides the first step by which a learner might estimate p(# | xy), because it
allows the learner to rewrite this unobservable probability in terms of p(xy | #). The next move is
to define a generative model for p(xy | #) whose parameters can be estimated from observables.
This can be done, I argue, with the assumption of conditional independence given a word

boundary:

phonological independence: p(xy | #) ~ p(x < #)-p# —y) (4.11)

Here I use the notation p(x < #) and p(# — y) to refer to the distribution of phones at word token
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edges:

pxX — #) =px#H|#) probability of phone x, given word-final position

p#H—y) =p#Hy | #) probability of phone y, given word-initial position

Note that this is not an assumption of phonological independence within words. The assumption
of phonological independence within words is strongly false. It would, for example, predict that
the sequence /kets/ 'cats' is equiprobable with other licit sequences /kast/ 'cast’, /stek/ 'stack’,
/teks/ 'tacks', /sekt/ 'sacked', /skaet/ 'scat’, /@skt/ 'asked', as well as with the illicit sequences
/stkeae/, /sktae/, and so on.

To summarize, the assumption of phonological independence allows the data model p(xy
| #) to be factored into two components p(x < #), p(# — y), which correspond to the distribution
of phones at word token boundaries. This assumption, though not strictly true, is reasonable for
infants before they have had the opportunity to observe any data to the contrary. As discussed in
the previous section, it also seems reasonable to suppose that infants can estimate the average
length of a word in their language, thereby obtaining the context-free prior probability of a word
boundary p(#). Thus, the problem of estimating DiBS diphone statistics has been reduced to the
subproblems of estimating the distribution of phones at word token edges.

For readers who are acquainted with Bayesian networks, the factored data model can be
visualized as a dynamic Bayesian network (Ghahramani, 1998), which is a graphical model for

sequential data. In graphical models, directed arrows represent probabilistic dependencies and



158
the absence of an arrow crucially represents the absence of a direct dependency (conditional

independence). The generative model described in Equation 4.11 can be depicted with Fig. 4.1,

where '%' indicates a phrase onset/offset, '¢p' indicates phones in the phrase, and '#?' is the

random variable indicating the presence/absence of a word boundary:

Fig 4.1: Graphical model for DiBS with phonological independence

The repeated configuration in which a phone ¢, points to #?, and both ¢, and #? point to the next

phone ¢, indicate that the next phone is generated from the previous phone, contingent on the
presence or absence of a word boundary. The absence of other arrows indicates there are no other
dependencies in the generative model; in particular the presence/absence of a word boundary is
conditionally independent of the presence/absence of preceding word boundaries, given the value

of the intervening phone.

Remaining terms

Although the generative model p(xy |#) is the core conceptual element of this Bayesian
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model, the remaining terms p(#) and p(xy) are just as important mathematically. For the present

purposes I have assumed these values are available to the learner, as motivated above.

Summary

In summary, the Bayesian formulation provides a principled means to estimate the
fundamental DiBS statistic p(# | xy) from simpler distributions, specifically generative models
for diphone occurrences conditioned on the presence of a word boundary, p(xy | #), the prior
probability of a word boundary p(#), and the context-free diphone probability p(xy). The first

term can be factored by the assumption of phonological independence into two models which

represent the distribution of phones at word token edges, p(xy | #) = p(x < #) - p(# — y). The
factored model p(xy | #?) has a convenient graphical formulation as a dynamic Bayesian network.
Alternatively, the learning model can be interpreted in terms of boundary-spanning versus word-
internal counts from a 'virtual corpus', which makes the analogy to baseline-DiBS formally
rigorous. Under either formulation, the learner need only specify counts or probabilities

corresponding to the distributions p(x « #), p(# — y).

Lexical-DiBS
The infant must somehow estimate the distribution of phones at word token edges. By
assumption, the infant does not have access to the phrase-medial distribution at word edges.
However, if the infant has already learned some words, then she clearly has access to at least

some word edges, namely the beginnings and endings of the words in her lexicon. There is one
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obstacle to using these words: the words in an infant's lexicon are word types, whereas the
needed distribution refers to word tokens. (The token distribution is the one that is encountered in
running speech, and is therefore the appropriate domain for segmentation statistics.) This section
demonstrates how the token edge distributions can be estimated from types, making crucial use
of the assumption that infants know the relative frequency of words in their lexicon.

The i1dea 1s to calculate the relative frequency with which a phone begins/ends a word by
estimating token frequencies from the lexicon. Some formal definitions may serve to make this

notion precise.

Def'n: A wordform w consists of a string of phones (¢, ¢....,).
Def'n: A lexicon (2 consists of a collection of wordforms w with associated frequencies f(w).
Def'n: The notation w, ==y is an indicator variable, whose value is 1 if w's initial phone is [y].

Def'n: The notation w, == x is an indicator variable, whose value is 1 if w's final phone is [x].

Then the edge distributions are given by:

px < #)= Dca flw)-(w,==x)/ Yiea flw)

PH# = y) = Lo f(00) - (w0, ==y) / 2o f(00) (4.12)

The logic of these formulae can be seen by imagining a 'virtual corpus' in which every known

lexical type w occurs with its attested frequency f(w). The number of times that [x] occurs word-
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finally is the sum over types of how many times it occurs for each word type. For a given type w,

this is either f(w) (if the word ends with [x]) or O (if the word ends with anything else). The total
frequency of word endings in the 'virtual corpus' is simply the total frequency of words.

I refer to this learning model as the lexical learner, or lexical-DiBS, because the diphone
statistics are estimated from a lexicon. This is relevant to the infant's situation because the infant
can exploit this learning algorithm as soon as they have learned a few words. Hence, the strategy
is valid even for learners in the early stages of lexical acquisition. Note that unlike baseline-DiBS,
which is trained on the occurrence of word boundaries in the corpus, these statistics are estimated
from the learner's mental lexicon, even in the early stages of lexical acquisition, when the learner

has not acquired very many words.

Phrasal-DiBS

The lexical learner described above estimated DiBS diphone statistics from a lexicon,
crucially assuming that the learner has access to a lexicon. However, as argued in Chapter 1,
infants appear to be able to segment speech before they have acquired much of a lexicon at all.
Therefore, a more satisfactory learning account would provide a way to estimate the DiBS
statistic p(# | xy) without reference to a lexicon at all. This section addresses that challenge by
proposing a phrasal learner.

The core idea is the insight of Aslin et al (1996) that utterance boundaries contain
information that is useful for word boundaries. This insight can be formalized in DiBS using the

notion of edge distributions developed above. It is specifically motivated by the observation that
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phrases always begin with a word and always end with a word*. Thus, the distribution of phones

at utterance edges should be a reasonable proxy for the distribution of phones at word edges:

utterance-edge approximation:

p(x — #) ~ p(x < %)

p# —y) ~p(% —y) (4.13)

In these formulae, the symbol % refers to a phrase boundary, and the notation p(x < %), p(% —
y) refers to the probability of [x] in the phrase-final position, and [y] in the phrase-initial

position, respectively.

Corpus Experiment I'V: Lexical- and phrasal-DiBS
Corpus Experiment IV is designed to test the phrasal and lexical models described in the
previous sections. Ultimately, what is of interest is how these models perform on a relatively
small subset of data, since that is the situation the infant is faced with. However, for maximal
comparability to the baseline results in previous chapters, this experiment will train and test the
models on the whole corpora. The early lexical model will be tested in a later experiment for its

ability to perform based on a small lexicon.

Corpora

The phonetic transcriptions of the BNC and RNC were used, as described in previous

34 Excepting word-medial disfluencies. I assume disfluent phrases can be neglected in modeling.
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chapters.

Method
The method is identical to Corpus Experiments I, 11, and III, except that p(# | xy) was

calculated according to the equations described above for both the phrasal and lexical learners.

Results

The results are plotted below in an ROC curve for each language, with the baseline shown
for comparison. In addition, the F-score is shown as a function of the decision threshold. (The F-
measure F = 2PR/(P+R) is a composite measure of precision and recall frequently used in the
machine learning literature. It is analagous to accuracy, but adjusted for response bias. In
particular, when the signal is rare, it is possible to get good accuracy by never detecting the

signal, but this will yield a low F score.)

BNC: DiBS ROC RNC: DiBS ROCs
1 1
0.8 0.8
o 0.6 ==pRase © 0.6 "=Base
& ==l exical & ==l exical
= 04 = 0.
< ™= Phrasal < ™= Phrasal
0.2 0.2
0 0
0 0.10.20.30.40.50.60.70.80.9 1 0 0.10.20.30.40.50.60.70.80.9 1

false alarm rate E E false alarm rate
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Fig. 4.2: Segmentation performance of learning-DiBS models, including ROC curves for
(a) BNC and (b) RNC with MLDT indicated with colored circle, and F score as a function

of threshold for (¢c) BNC and (d) RNC.

Discussion

Experiment IV tests the segmentation performance of the two learning models, phrasal-
DiBS and lexical-DiBS, and compares them against baseline-DiBS for both of the large language
corpora used 1in earlier chapters. Comparison of the ROC curves (Fig 4.2ab) illustrates that the
learning-DiBS models exhibit performance generally 'close’ to that of baseline-DiBS. Lexical-
DiBS in particular exhibits almost the same segmentation as baseline-DiBS. Thus, while a
reduced level of segmentation performance is evident for either learning-DiBS model (as
expected, given that baseline-DiBS is the statistically optimal prelexical parser), the extent of
reduction is quite small; both learning-DiBS models achieve a level of segmentation that is near

the statistical optimum.
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A second important fact is evident from consulting Fig 4.2ab: both of the learning
models, like baseline-DiBS, exhibit undersegmentation at MLDT (i.e. false alarm rate less than
5%). In other words, a learner using these methods to estimate DiBS statistics is predicted to
undersegment. (The F score is reported across all decision thresholds for comparability with

other models of word segmentation.)

Corpus Experiment V: Coherence-based models

Experiment IV showed that DiBS can be estimated from phrase-edge distributions and or
a budding lexicon, and that once these models are fully trained they achieve favorable
performance relative to the baseline model. But, it may be asked, is this a genuine step forward?
As reviewed in Chapter 1, a number of other prelexical phonotactic learning models have been
proposed centering around various measures of phonological coherence. As further discussed in
Chapter 1, these proposals have not been computationally implemented in a rigorous, systematic,
and comparable manner. The next section systematically implements a variety of coherence-

based approaches, to enable a fair comparison against DiBS.

Corpora

The phonetic transcriptions of the BNC and RNC were used, as described in previous

chapters.

Method
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The method is identical to Corpus Experiments I-IV, except that word boundaries were
identifed using a decision threshold over the following coherence-based statistics (Saffran et al,

1996; Cairns et al, 1997; Hay, 2003; Swingley, 2005):

forward transitional probability FTP(xy) = p(xy)/p(x)
pointwise mutual information PMI(xy) = log, p(xy)/(p(xX)*p(y))

raw diphone probability RDP(xy) = p(xy)

The coherence-based measures yield a statistic for every diphone, e.g. FTP(xy) yields the
forward transitional probability for the diphone [xy]. In the terminology of Chapter 2, these

statistics were mapped to hard decisions using a detection threshold. That is, for some threshold

0, [xy] is treated as always signalling a word boundary if FTP(xy) > 0 to a word boundary, and as

always signaling the absence of a word boundary otherwise.

Results
The results are plotted below in an ROC curve for each language, with the baseline shown

for comparison. In addition, the F-score is shown as a function of the decision threshold.
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Fig 4.3: Segmentation performance of coherence-based models, including ROC curves for

(a) BNC and (b) RNC and F score as a function of threshold for (¢) BNC and (d) RNC.

Discussion
The naive prelexical statistics all yield generally comparable patterns of performance. The

pointwise mutual information measure (PMI) appears to be generally more robust (e.g. near



168
maximum F score for a broadest range of thresholds), and the raw diphone measure consistently
yields poorer segmentation, but overall, the three coherence-based measures behave similarly.
Moreover, inspection of the ROC curves shows that there is no regime which exhibits
undersegmentation or oversegmentation while also exhibiting much-better-than-chance
performance. In other words, all of these naive prelexical statistics exhibit poor discrimination of
word boundaries from word-internal diphones, and all exhibit over+undersegmentation when
they do better than chance.

A natural question is why the coherence-based measures do so much worse than DiBS
when superficially they are quite similar. After all, both models are defined with reference to
unigram and bigram statistics only. The central difference is in the amount of context that is
modeled. The coherence-based models are based on the premise that word boundaries will cause
lower coherence, so the presence of a word boundary can be inferred by a lower degree of
coherence. Thus, coherence-based models attempt to find word boundaries indirectly, according
to a statistic that should be associated with them. In contrast, DiBS models word boundaries
directly. Another way to think about this is that DiBS explicitly models word-positional context,
whereas the coherence-based models don't. That is, DiBS tracks the relative frequency with
which a sound x occurs word-initially, word-medially, and word-finally. In contrast, coherence-
based models do not. It is the better modeling of positional context that allows DiBS to do so

much better than coherence-based models.

Corpus Experiment VI: Bootstrapping lexical-DiBS
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Experiment IV showed that both learning models exhibited performance that was
generally comparable to baseline-DiBS. However, these models were trained on the entire data
set, whereas what is ultimately of interest is the models' segmentation when trained on a limited
subset of data — the situation an infant faces. Experiment VI addresses this issue by evaluating
the early lexical model's segmentation as a function of lexicon size.

For the greatest verisimilitude, the early lexical learner should be supplied with actual
infant lexicons, e.g. from the MacArthur CDI vocabulary assessment forms that parents typically
fill out when their children participate in child language research studies (Dale & Fenson, 1996).
Unfortunately for the present purposes, individual vocabulary assessments are not a matter of
public record in English or Russian.” Therefore, infant lexicons were generated for this
experiment under the hypothesis that infants learn words according to their frequency. For each
such generated lexicon, the early learning model was then applied to calculate the DiBS statistic
p(# | xXy). Segmentation was assessed at the MLDT, as in previous chapters.

Although this method sacrifices something in the way of realism, it yields a high degree
of control. In particular, it is possible to generate a large sample of lexicons which are all
matched in overall size. Thus, it can give some idea of the stability of the early lexical model
with respect to vocabulary size. In particular, if the algorithm fails to stabilize within some
reasonable vocabulary size, this would constitute strong evidence that the algorithm is not an
adequate model for infant segmentation. This follows from the fact that infants do vary in their

lexicons, but appear to achieve consistent and good segmentation relatively early in development.

35 The MacArthur CDI website (http://www.sci.sdsu.edu/lexical/) reports averages across infants for a particular
age. I was unable to find equivalent norms for Russian-learning infants.
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The experiment is described in more detail in the following subsections.

Corpora
The corpora are the phonetic transcriptions of the BNC and RNC developed in previous

chapters.

Method
To investigate the predicted developmental trajectory, a spectrum of target lexicon sizes

was considered. Specifically, the following sizes were preselected:

lexicon size 20, 50, 75, 100, 125, 150, 200, 250, 300, 400, 500, 1000

For each lexicon size L, a sample of L wordforms was drawn. This sample was drawn from the
frequency distribution of the corpus. In other words, it was sampled without replacement from

the set of all wordforms that occur in the corpus, weighted by the word frequency™. Wordforms
in the sample were assigned the same frequency with which they occurred in the corpus,

preserving their relative frequency distribution.

36 Several caveats are in order. First, word-learning in infants is driven by a variety of factors, of which frequency is
only one (Hall & Waxman, 2004). In particular, phonological factors such as phonotactics and lexical
neighborhood density affect word-learning (Storkel et al., 2006). All other things being equal, it seems
reasonable to suppose that infants are predisposed to learn words which exemplify the most typical patterns of
the language, cf. the trochaic bias in English and Dutch (Swingley, 2005). Thus, this frequency-weighted
sampling method is likely to overestimate the phonological complexity of the infant's lexicon for large sampling
sizes. This effect is somewhat counter-balanced by the Zipfian fact that ultra-high-frequency function words such
as he/on 'he' and and/i 'and' are disproportionately phonologically simple. In small samples these ultra-high-
frequency items are likely to be over-represented. The interested reader is encouraged to contact me for further
details.
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For each lexicon size, 100 lexicons were generated as described above. For each such
lexicon, segmentation was assessed on the entire corpus at the MLDT, yielding recall and false

alarm rates.

Results
The results are shown below in the form of an ROC curve. It should be noted that unlike
in the previous experiments, the ROC curve need not be monotonic, since the underlying parser

is changing.
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Fig 4.4: Segmentation of lexical-DiBS as a function of vocabulary size in (a) BNC and (b) RNC

hit rate
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Discussion

Consistent with the previous results, the early lexical learner exhibits undersegmentation
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for every vocabulary size tested. Moreover, a general pattern is evident whereby the lexical
learner's segmentation initially begins with both hit and false alarm rates near 0; as vocabulary
size increases, the false alarm rates stays basically constant, but the hit rate increases. By 1000
words, both models have come reasonably close to the adult-level performance, which is a hit
rate of 75% for English and of 45% for Russian.

A word is in order about the Russian results. Owing to the extensive inflectional system
of Russian, most lexemes have multiple wordforms; for example typical masculine nouns such as
stol 'table' have about 10 phonologically distinct forms in their paradigms. Furthermore, relative
frequency within paradigms is relatively stable across lexemes (Daland, Sims, & Pierrehumbert,
2007), which means that if a wordform is frequent, other wordforms sharing the same lexeme are
also likely to be frequent. As a result, the '1000 words' in the Russian data consist of fewer
lexemes than the the 1000 words of the English data. Thus, it is not really clear whether 'number
of words' is strictly comparable across these two languages. The answer to this question depends
on whether infants perceive the relationship between different forms of a paradigm; a question for
which research is in its infancy (Kajikawa, Fais, Mugitani, Werker, & Amano, 2006; Fais,
Kajikawa, Amano, & Werker, in press). Thus, for the present I will simply note this factor, and

pass on the general discussion.

General discussion
This chapter has accomplished one of the main goals laid out in Chapter 1, of providing a

full learnability account for prelexical word segmentation. Specifically, the fundamental DiBS
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statistic p(# | Xy) can be rewritten using Bayes' Rule. With the assumption of phonological
independence across word boundaries, p(# | Xy) can be estimated using the simpler the word-
edge distributions p(x < #) and p(y — #) (the context-free probabilities of diphones p(xy) and a
word boundary p(#) are assumed to be observable). Two learning algorithms to estimate these
distributions were then proposed: the lexical learner bootstraps from the learner's lexicon, and the
phrasal learner bootstraps from phrase-edge distributions, without any lexicon at all.

The segmentation performance of these learning theories was compared against both
baseline-DiBS and against several of coherence-based threshold models discussed in Chapter 1.
The results showed a generally similar undersegmentation pattern as with baseline-DiBS, with
some degradation owing to the faulty independence assumptions. However, both bootstrapping
models significantly outperformed the coherence-based models in two different ways: first, they
exhibited far greater accuracy at all thresholds, and second, at MLDT the DiBS models exhibited
undersegmentation, whereas the coherence-based models all exhibited over+undersegmentation.

These results raise a number of issues. One concerns Goldwater's (2006) result that
models which assume lexical independence are bound to undersegment, as a result of the large
number of collocations in natural language. Given this result, it is natural to wonder whether the
undersegmentation pattern exhibited by DiBS is simply a consequence of the same collocational
facts. A related issue concerns the relationship between collocations and morphologically
complex words; both of which have multiple sub-parts, but whose organization is categorically
distinguished in DiBS. More broadly, the clear prediction of these models is ofprelexical

undersegmentation throughout the lifespan. This has implications for the architecture of the
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lexical access system, in addition to the implications for the wordforms that children will initially

acquire. Each of these issues is addressed in separate subsections below.

Collocations: lexical vs. phonological independence

Goldwater (2006) argued forcefully that models of word segmentation which assume
lexical independence between successive words are bound to undersegment. This assumption is
clearly related to the assumption of phonological independence across word boundaries (called
p-independence in this section) which is crucial to the bootstrapping models presented in this
chapter. Thus, it is natural to wonder whether the observed pattern of undersegmentation for the
DiBS bootstrapping models is simply a consequence of the same mechanism that Goldwater
uncovered. In this section, I will argue that p-independence is crucially different than the
assumption of lexical independence; in other words, undersegmentation in DiBS is not simply
caused by a faulty independence assumption.

A brief review of Goldwater's (2006) result is in order. Goldwater first created a baseline
version of her model, which made the lexical independence (unigram) assumption; in this model
she found that many collocates were posited as single words, yielding undersegmentation. Next,
she relaxed the independence assumption by tracking adjacent (bigram) dependencies, and found
undersegmentation to be drastically reduced. Then, to show that the effect was due specifically to
the independence assumption rather than to the superior statistical modeling properties of the
richer model, she randomly permuted the order of words in the original corpus, in effect forcing

the lexical independence assumption to be true. She ran the baseline (unigram) model on this
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modified corpus, and found that the undersegmentation effect again disappeared. Finally, and
perhaps most convincingly, Goldwater initialized the baseline model with the correct lexicon, and
found that the undersegmentation effect returned, indicating that the model posited the
collocations as new words even though it already knew the sub-parts were words. In terms of
Goldwater's model, the probability mass lost by positing the novel word was more than
compensated for by the probability mass saved in treating the independence-violating collocate
as a single word. In effect, the collocation “looked more like a word” (its distribution was more
consistent with the model's expectations for a word) than its component words did (since they
strongly violated the independence assumption precisely by co-occurring with each more
frequently than expected).

Thus, the question is whether p-independence is what causes undersegmentation in the
DiBS bootstrapping model. I will argue not. The argument hinges on the fact that p-
independence refers to a different level of representation than lexical independence. Thus, even
though the two assumptions are related, violations of lexical independence do not necessarily
imply violations of p-independence. There are three arguments to this effect. First, collocations
would have to target or avoid specific clusters in order to generate a significant violation of p-
independence; such an effect would constitute a strong violation of the Saussurian principle of
the arbitrary relationship between word meaning and word form (Saussure, 1983). Second, no
such violation is apparent; rather, both the English and Russian data show that p-independence is
approximately true. Finally, baseline-DiBS does not assume p-independence, but nonetheless

exhibits undersegmentation. These points are addressed in turn below.
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To see the first point, suppose that English generally obeys p-independence, but has a
single frequent collocation, for concreteness suppose it is million dollars. There is no effect of
this collocation on any word-internal diphones, as they are driven by word frequencies alone.
Thus, the only explicit/positive effect is to strongly inflate the boundary-spanning counts for the
diphone [nd] over what would be expected under p-independence. There is also a corresponding
implicit/negative effect of weakly deflating all the other boundary-spanning counts under what
would be expected under p-independence (since probabilities must sum to 1). Now let us
consider the effect of a related but slightly different collocation, for concreteness suppose it is
million people. The effects of this collocation are the same: strongly inflating the boundary-
spanning counts for [np] over what is expected, and weakly deflating the boundary-spanning
counts under what is expected for all other diphones. Crucially, the strong inflation of [nd] is
partially countered by the weak deflation caused by [np], and vice versa. The inflationary effects
caused by one collocation will tend to be countered by the deflationary effects caused by all other
collocations with a different boundary-spanning diphone; in other words, the violations of
independence caused by one collocation will tend to cancel out the violations caused by most
others. Thus, to generate a systematic violation of p-independence, collocations would have to
specifically target or avoid particular boundary-spanning diphones.

There is little evidence that this occurs. In fact, p-independence is approximately true for

both English and Russian, as shown by Fig. 4.5ab:
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Phonological independence in BNC Phonological independence in RNC
-3

-11
-13
-15
-17
-19
-21

In Efp(xy | #)]
In Efp(xy | #)]

21 19 -17 -15 13 11 -9 -7 -5 -3

21 19 -17 -15 -13 -11 -9 -7

-5 -3
In p(xy | #) @ E In p(xy | #)

Fig 4.5: Phonological independence in (a) BNC and (b) RNC

The x-axes of Fig. 4.5 represent the natural log of the actual probability p(xy | #), as estimated by

normalizing the observed boundary-spanning counts, and the y-axes represent the natural log of

p(x < #) - p(# — y), which is the expected probability under p-independence. Each point
represents a boundary-spanning diphone, and the identity line represents the shape that is
expected if p-independence is strictly true. As shown by Fig 4.2, while there is some deviation
from the identity line, the approximation is in general quite good. More specifically, all
deviations between log observed probability and log expected are between -2.84 and 3.4, with a
standard deviation of .45 in the RNC (between -3.6 and 3.77, standard deviation of .71 in BNC),
meaning that the estimated and observed probabilities are always within a factor of 50 (less than
two orders of magnitude of error), and the majority of estimated probabilities are correct to
within a factor of 2.

The regression slopes and intercepts are given below with their standard errors (95%
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confidence interval):

BNC: slope = .843+.009, intercept = .000£.000

RNC: slope = .968+.005, intercept = .000£.000 (4.14)

Interestingly the slope is slightly less than 1 in both cases, suggesting a small but systematic
deviation from phonological independence. In fact, this is a sampling artifact, caused by the fact
that ultra-low probability diphones are under-sampled. Since probability distributions must sum
to 1, the consequence is that the relative frequency estimator (the 'actual’ probabilities on the x-
axes in Fig 4.2) will overestimate the true probability of diphones which have been observed
(Baayen, 2001). This same effect does not occur with the expected probabilities, which are
generated from the much smaller unigram distributions where undersampling is not an issue. In
other words, the x-values are inflated over what they should be by this sampling artifact, resulting
in a slightly lower slope. Thus, although the slope of the regression line deviates slightly from the
expected value of 1, these data are nonetheless strongly consistent with p-independence,
demonstrating it is a very reasonable assumption for learners to make in the absence of better
data.

There is a final argument which shows that p-independence does not cause
undersegmentation in DiBS: baseline-DiBS exhibits undersegmentation, but it does not assume
p-independence. This suggests there is some other factor in DiBS besides p-independence which

causes undersegmentation, undermining the claim that undersegmentation pattern must be
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attributed to the assumption of p-independence.

In summary, while collocations introduce a substantial violation of lexical independence,
this does not automatically imply substantial violations of phonological independence (across
word boundaries). In fact, the data suggest that p-independence is approximately true in both
English and Russian. Thus, undersegmentation in DiBS models is not a straightforward
consequence of the collocation mechanism outlined in Goldwater (2006); even if the assumption
of p-independence contributes to undersegmentation in the bootstrapping models, it cannot be
the full or even the main cause, as baseline-DiBS also undersegments and it does not make the p-
independence assumption. The assumption of phonological independence across word

boundaries does not cause DiBS to undersegment.

Segmenting collocations vs. morphologically complex words

As reviewed in Chapter 1, there is a conceptual cline between single and multiple words,
with complex forms (trans-Siberian), compound words (hotdog, penknife), and collocations
(apple pie) exhibiting a mixture of properties that are typical of simplex forms or multiple word
sequences. In this section, I consider the evolutionary implications of DiBS for this cline; that is,
how the iterative effects of DiBS parsing might accumulate and drive changes in a language's
morphophonological structure. However, before this, it is important to distinguish the conceptual
cline between single and multiple words (discussed above) from the operational distinction in the

corpus data that DiBS is tested on. Operationally, multi-word sequences are categorically
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distinguished from single word sequences, because if the underlying orthographic sequence
contains an internal space or other sentential punctuation, the sequence consists of multiple
words, and otherwise it is a single word.

The fact that baseline-DiBS does not exhibit a substantial degree of oversegmentation
minimally implies that it does not generally parse simplex and complex words into multiple
components. Moreover, the generally high accuracy implies that baseline-DiBS generally agrees
with the orthography (of English and Russian) in what counts as a word boundary. This fact is
hardly surprising, given that baseline-DiBS is trained with corpus data whose word boundaries
derive from the orthography. What is surprising, or at least not obviously predicted, is that the
two bootstrapping models described in this chapter also generally agree with the orthography. In
fact, lexical-DiBS exhibits almost identical performance to baseline-DiBS when supplied with
the full lexicon of the language. One way of interpreting these results is that not only does DiBS
draw the line between single and multiple words according to phonotactics (by construction), but
that the natural languages tested here draw the line in generally similar way.

Additionally, these results replicate and extend the results of Hay and colleagues on
phonotactic juncturehood. Hay and colleagues showed that phonotactic juncturehood is highly
correlated with decomposability in complex words specifically (e.g. Hay & Baayen, 2002). The
present results shows the effects of phonotactic juncturehood prove useful for distinguishing
multi-word sequences as well. Moreover, they suggest that natural languages appear to be
structured so as to yield near-complementary distributions even for short sequences: sequences

which are licit and typical across word boundaries are systematically absent word-internally,
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and sequences which are licit and typical word-internally tend to not occur across word
boundaries.

This interpretation receives some additional support from Pierrehumbert's (1994) study of
triconsonantal clusters. This study showed that the set of attested word-internal clusters was
much smaller than the set of expected clusters under the hypothesis that they are generated from
the cross product of word-final and word-initial clusters. More specifically, Pierrehumbert
conservatively estimated that over 8,700 word-internal consonant clusters were predicted,
whereas only about 50 were actually observed.” In other words, monomorphemic words appear
to systematically avoid word-internal phonotactics that are typical of word boundaries.*®

In fact, this finding is not just consistent with DiBS, it is straightforwardly predicted by
the parsing mechanism of DiBS. To see this, suppose that a complex wordform with strong
junctural phonotactics is introduced into the language. For example the [tn] cluster in post-9/11 is
quite rare word-internally. DiBS would accordingly predict that listeners would tend to segment
off post from the rest of the word, treating it as a free morpheme. Indeed, a recent post on

Language Log (http://languagelog.ldc.upenn.edu/nll/?p=1260) provides evidence that post has

become a preposition in English. For example, in “Post the wash-out from the credit crunch, most
assets globally were overpriced”, post both stands alone and takes a multi-word noun phrase

complement, clear diagnostics of being a separate word. In sum, as soon as a word with strong

37 Pierrehumbert (1994) argued that many of these 'absent' clusters were not problematic because their expected
frequency was less than 1. Even taking this into account, the expected number of clusters was at least 200, so 150
clusters were 'missing'.

38 Pierrehumbert (p.c.) indicated that in compounds which were listed in the dictionary, the boundary-spanning
junctures were systematically under-represented. Supposing that dictionary listing is a reasonable proxy for non-
compositional semantics, this finding is also explained by DiBS, with the further assumption that words are more
likely to undergo semantic drift and acquire noncompositional meaning if they are parsed as single words rather
than as multi-word units.


http://languagelog.ldc.upenn.edu/nll/?p=1260
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junctural phonotactics is introduced, DiBS will segment the word at the juncture by the very
nature of its parsing mechanism.

In fact, this same mechanism may explain the errors the DiBS makes. Recall that
compounds occupy the most unclear position on the cline between single and multiple words;
indeed, some compounds are variously written as both single, multiple, and hyphenated words
(flowerpot, flower pot, flower-pot). Even so, compounds are generally written without a space in
English, but exhibit most of the other properties of multiple word sequences; in particular, they
should exhibit strong junctural phonotactics since they are composed of two free morphemes.
The prediction is that DiBS should decompose compounds on the basis of their phonotactics; but
since most compounds are written without a space, this would be counted as an error. In other
words, the relatively limited degree of oversegmentation that DiBS exhibits may be due to
compounds, which to some extent behave phonologically like multiple words. Unfortunately, it is
not an easy matter to test this interpretation, as compounds are not marked as such in the corpora

used here.

The opposite kind of evolutionary effect is predicted for collocations with weak junctural
phonotactics. As discussed briefly in Chapter 2, many of the collocations that are frequently
undersegmented are function word + function word sequences such as he is and and in. Thus,
DiBS predicts that these frequent function-function collocations may be parsed as a

morphologically complex unit, as appears to have already happened for he is ~ he's.
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To summarize, the generally good agreement on word boundaries between DiBS, which is
entirely phonotactically based, and the language corpora used here, which are orthographically
based, suggest that junctural phonotactics are a very powerful determinant of word boundaries in
natural languages. This finding can be explained as an evolutionary consequence of DiBS, which
will tend to parse items apart if they have strong junctural phonotactics, and together if they lack
strong junctural phonotactics. Natural languages are structured so that junctural phonotactics are
inherently gradient, but nonetheless exhibit a bimodal distribution, with most sequences being a

reliable cue to the presence or absence of a word boundary.

Implications for lexical access

Both baseline-DiBS and the two bootstrapping-DiBS models presented in this chapter
exhibit undersegmentation, so it is a clear prediction of DiBS that prelexical parsing will
undersegment the input throughout the lifespan. Thus, the lexical access system will encounter
the characteristic error pattern of undersegmentation throughout the lifespan. As a consequence,
the lexical access system might operate more efficiently than would be otherwise possible. This
follows from the principle that it is more efficient to do one thing at a time than different things
at the same time.

In particular, if the lexical access system is conceived of, at least in part, as a filter for
parsing errors, there are 2 kinds of errors that in principle it could catch. One error is an error in
which the prelexical parser failed to identify a word boundary. In this case the lexical access

mechanism must identify the missed word boundary, either by recognizing the end of the
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preceding word, or by recognizing the beginning of the following word. The other kind of error is
an error in which the prelexical parser has falsely identified a word boundary. In this case, the
lexical access mechanism might identify the false boundary by failures of lexical access for the
material on both sides of it, together with some kind of repair mechanism. It seems intuitively
plausible that the lexical access mechanism would function far more efficiently if it did not have
to guard against both of these kinds of errors. This is exactly the prediction of DiBS: the
lexical access does not have to guard against both kinds of errors, because DiBS only very rarely
identifies a false word boundary.

It would make sense for the lexical access system to take advantage of this fact. One way
it could do so is in interpreting lexical access failures as a reliable signal for the presence of a
novel word. To see this, let us begin by observing that a genuinely novel word should always
trigger a failure of lexical access, since a listener cannot recognize a word they do not know. Now
let us revisit the case in which the lexical mechanism has been passed a false word boundary. The
most plausible way to catch this error would be by a failure of lexical access, because the false
word boundary breaks up the word improperly into nonword subparts. Under this scenario, the
failure of lexical access is ambiguous: it might signal the advent of a novel word, or it might
signal a false word boundary. If, instead, the lexical access mechanism can rely on the prelexical
parser to not pass false word boundaries, lexical access failures will not be triggered in this way.
Thus, lexical access failures will only occur when a novel word has been encountered. In other
words, a failure of lexical access will be an unambiguous signal for a novel word; the lexical

access mechanism need not waste precious cognitive resources attempting to discover the false
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word boundary and re-parse. In this way, constraints on prelexical errors translate directly into

more efficient processing in the downstream lexical access system.

Implications for word learning

Recapitulating this chapter's results, both the baseline model and the two bootstrapping
models exhibited undersegmentation. Thus it is a clear prediction of DiBS that the prelexical
parser will undersegment throughout the lifespan. In particular, it will undersegment during the
initial stages of lexical acquisition. This is a crucial point, because as discussed in Chapter 1, the
prelexical segmentation mechanism is what segments candidate word-forms, thereby making
them available to be learned. It follows that the set of forms that infants are exposed to as
possible words will consist of both properly segmented and undersegmented forms. In other
words, the implication of the undersegmentation pattern exhibited by DiBS is that infants will
learn both properly segmented and undersegmented wordforms, but very rarely oversegmented

forms. This prediction is explored in more detail in the next chapter.
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CHAPTER 5: TOWARD WORD-LEARNING

Abstract
This chapter begins by arguing that wordform learning crucially implicates lexical access.
Thus, a theory of lexical access is proposed in which phrases (the output of the parser) are
further decomposed. The adequacy of the proposed lexical access mechanism is tested by
applying it to the output of the parsers developed in preceding chapters. Then, the theory is
extended to account for wordform learning: 'candidate' wordforms are added to the lexicon when
they have been accessed sufficiently frequently. These components are integrated with the

learning-DiBS models from the previous chapter to yield a full boostrapping model.

As set out in the two-stage framework of Chapter 1, this dissertation has proceeded by
treating word segmentation as its own problem, related to but logically distinct from word
recognition and word learning. The preceding chapters develop models of how prelexical word
segmentation might change as a function of increasing lexical knowledge, yielding a full
developmental trajectory for this problem. But, because word segmentation is related to word
learning, no account can be deemed satisfactory without addressing the nature of that
relationship. The goal of this chapter is to do exactly that: develop a model of how the lexicon
might change as a function of parsing the input; in other words, how to learn words from the
output of the parser.

In the context of the two-stage framework set out in Chapter 1, previous chapters have
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concentrated on the representations and processes associated with the prelexical parser
specifically. This chapter focuses on the representations and processes associated with the

lexicon.

What's in a lexicon?

Minimally, an infant lexicon must consist of some word forms that the infant recognizes
as words. Note that this does not imply that the infant must know the meaning of all the words,
only that for each form in her lexicon, the infant recognizes the form is a word. (For evidence that
word forms can be learned prior to meaning, see Graf-Estes et al, 2007). Thus, as a
simplification, I omit meaning entirely here. As an additional simplification, I treat lexical status
as binary — specific wordforms are either in the lexicon, or not. Thus, 'wordform learning' is the
process of adding a wordform to the lexicon.

While 'being in the lexicon' is binary, I do assume that infants track the frequency of
wordforms in their lexicon, as discussed in Chapter 4. Finally, I assume that the lexicon includes
'lexical candidates', sound sequences for which the listener is trying to decide whether they are
words or not. This assumption is essentially motivated by the need to account for word-learning,

so I will defer further discussion for now to consider the question of what triggers word learning.

Locus of word learning
I claim that word learning crucially implicates the lexical access mechanism (rather than

the prelexical parser). This argument is predicated on two core assumptions. First, as laid out in
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Chapter 1, I assume there is both a prelexical parser and a lexicon. Second, as laid out in the
section above, [ assume that wordforms either are in the lexicon, or they are not. There are then
two arguments that word learning implicates lexical access.

The first argument for this claim is theoretical simplicity — the normal purpose of the
lexical access mechanism is to access the lexicon. Adding a new word to the lexicon certainly
requires accessing the lexicon. Thus, it would not be unnatural for the lexical access mechanism
to mediate word-learning. On the other hand, the normal purpose of the prelexical parser is to
assign phonological parses to incoming material, before any knowledge of the incoming
material's lexical status becomes available. In other words, the parser is supposed to operate
without needing to access the lexicon. If the prelexical parser is what triggers word-learning, it
would need to access the lexicon especially for this purpose. Since the lexical access mechanism
normally accesses the lexicon, and the parser normally doesn't, it is theoretically simpler and
more natural to posit that word-learning is mediated by lexical access.

The second argument for this claim depends on the fact that word-learning processes
should only occur for new words. This follows straightforwardly from the assumption that a word
is either in the lexicon or not: it is only logically coherent to add a wordform to the lexicon when
it is not already there. Determining that a word is novel (not already in the lexicon) requires
lexical access; more specifically, it requires a lexical access failure. Thus, there is a simple and
natural connection between lexical access and word-learning: word-learning should only be
triggered when lexical access fails. This can be straightforwardly accounted for if lexical access is

the locus of word learning. If, on the other hand, the prelexical parser is what mediates word
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learning, it requires feedback from the lexical access mechanism to determine when a form is
new. In other words, the lexical access mechanism has to be involved in word-learning since a
lexical access attempt is necessary to determine that a word is new; it is therefore simpler to posit
that the lexical access mechanism mediates word learning directly, rather than feeding back to the
parser for this purpose only.

For these reasons, I will assume that word learning implicates lexical access failure. Thus,
to account for word learning, I must also account for lexical access. The following section
sketches a theory of lexical access which is similar in spirit to MATCHECK (Baayen, Schreuder,
& Sproat, 2000). The theory proposed below differs from MATCHECK in that it is fully
probabilistic. That is, rather than assigning 'activation values' to lexical entries as a function of
‘input time', it assigns a probability distribution over possible parses; updating phrase-by-phrase

rather than millisecond by millisecond.

Lexical access
Lexical access refers to the process of identifying the lexical elements (words) that
correspond to a spoken input representation. In a full theory of speech processing, lexical access
should assign a meaning representation to a sequence of forms, but since the focus of the present
dissertation is more narrowly on word segmentation, I will simplify matters by treating lexical
access as a matching process, i.e. simply recognizing word forms as known or not, without regard
to their meaning.

The parsing results in preceding chapters demonstrated a consistent pattern of
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undersegmentation, meaning that in general, at least for adults, the lexical access mechanism can
rely on the prelexical parser's decision when it has positively identified a word boundary, but
must consider the hypothesis that word boundaries have been missed in its input. An example is

given below to illustrate this point:

(15)  orthographic transcription: 'from an infected mother to her baby'

correct phonetic trans'n: frQm {n InfEktld mVD@R tu h3r blbl

prelexical parser output: frQm{nInfEktld mVD@R tuh3r blbl
The 'correct transcription' has spaces to indicate the true word boundaries; the 'prelexical output'
indicates the word boundaries recovered by the prelexical parser (hard parsing at MLDT). Thus,
for this phrase, the lexical access mechanism will receive four distinct inputs. Of these, 'from an
infected' and 'to her' will have been undersegmented by the parser, so the lexical access
mechanism must further decompose these forms by matching the corresponding known words.
The remaining words, 'mother' and 'baby' will have been correctly parsed by the prelexical parser,
so the lexical mechanism need only match these full forms (without incorrectly further
decomposing these sequences). In other words, the problem faced by the lexical access
mechanism is to further decompose its input by matching against known forms.

A related question is the desired output of the lexical access mechanism. Since the lexical
access mechanism cannot know in advance whether its input will contain word boundaries or not,

there are in principle multiple possible decompositions. For example, the word 'captain' could be
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parsed as 'cap ten' (assuming an unreduced pronunciation for the second syllable) or 'captain'.
Similarly, the phrase 'and it' could be decomposed as 'and it' or as a novel word 'andit'. From a
theoretical perspective, the most natural way to address this issue is to consider all possible
decompositions, as this is the natural generalization of the 'dual-route’ model of inflectional
morphology (Marcus, Brinkmann, Clahsen, Wiese, & Pinker, 1995; Baayen, Dijkstra, &
Schreuder, 1997; Baayen & Schreuder, 1999; Baayen, Schreuder, & Sproat, 2000; Hay, 2003; Hay
& Baayen, 2002). From an evaluation perspective, however, it is much simpler to consider the
single best decomposition. As with the parser, I will take a probabilistic approach to this
problem: the theory will identify and assign a probability distribution over possible
decompositions. However, I will only evaluate the maximum likelihood decomposition, so for the
present purposes this will be the only output of the lexical access mechanism. The following sub-

sections tackle each of these problems in turn.

Identifying possible decompositions

I define a decomposition as an assignment from the input sequence of phones to a

sequence of words. I assume that

(1) a well-formed decomposition partitions the input

(2) decomposition occurs chronologically

Decompositions may be ill-formed in two ways. First, some element(s) of the input may not be



192
assigned to any words at all. Second, some element(s) may be assigned to multiple words. In
other words, a decomposition is well-formed if and only if every phone in the input sequence is
explained by exactly one word, and all phones between the initial and final phone of a word

belong to that word. An example of a well-formed decomposition is illustrated below:

(16)  input k{ptEn
/A

partition k{p | tEn
I I

word seq ‘cap' | 'ten’

The implication of these assumptions is that in the process of constructing a single
decomposition, the lexical access mechanism need only initiate lexical searches at known word
edges. And, since decomposition occurs in the order that words become available), access begins
from the 'left'most unmatched edge. Thus, the access mechanism goes through the entire lexicon,
identifying any lexical items which exactly match a substring of the input from the leftmost
unmatched edge.

For example, for the input phrase 'captain’, the current leftmost unmatched edge is the
very beginning of the phrase, so the lexical access mechanism would look for words which begin
with /k/. It would find the word 'cap', which exactly matches 'captain' on the leftmost 3 segments.
At this intermediate stage of decomposition, the lexical access mechanism has matched 'cap’
against the longer string 'captain’, leaving a residue, the as-yet-unmatched right substring '-tain'.
The left edge of this residue becomes the new leftmost unmatched edge, so now the lexical

access mechanism will try to match '-tain'. The lexical access mechanism finds 'ten’, which for
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the sake of illustration we will assume has the same segments. Then the lexical access
mechanism has exhaustively matched the residue, so this particular decomposition is done.

However, if the lexical access mechanism stopped here, it could only find one
decomposition, in this case the wrong one. It must also consider other matches for the input. For
example, the lexical search might continue and find the word 'captain’. This item would result in
an exact match, fully explaining the input as well. Thus, the lexical access mechanism should
find two parses for this sequence: 'cap ten' and 'captain’.

It may happen that the lexical access mechanism encounters some input it is simply
unable to decompose in this manner. For example, suppose that the listener encountered a novel
name, such as my last name 'Daland'. After searching through the whole lexicon, it cannot find a
single word that exactly matches 'Daland' from the left edge. At this point, the lexical access
mechanism fails, concluding that 'Daland' must be a novel form. In this case, it outputs a single
decomposition: 'Daland'.

Owing to the recursive nature of decomposition, lexical access will parse embedded
words as long as it can recognize the words that precede them. For example, if the input is 'andit’,
the lexical access mechanism will first match 'and’, and then match 'it', yielding the correct
decomposition 'and it'. And, owing again to the recursive nature of decomposition, the proper
result will occur even if the embedded word is novel. For example, if the input is 'aDaland',
lexical access will first match 'a’, then posit 'Daland'. This is because, after the lexical access
mechanism has matched 'a', it is in the same position as in the previous paragraph: the leftmost

unmatched edge begins at 'Daland'.
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A final consequence of this recursive search is that if the lexical access mechanism is
unable to find a single form that matches a whole residue, it will posit the whole residue as a new
form, even if it is able to decompose the residue. Thus, if lexical encounters the name 'Adele’, it
will posit the decomposition a+dell, but it will also posit the whole form Adele. Similarly, if the
input 'andit’ is encountered, not only will lexical access find the (correct) parse 'and it', it will also
posit a new form 'andit'. In other words, multi-word sequences can be identified as constituting a
single unit if their phonotactics and relative frequency support such a decomposition.

Note that this property is not specially coded into the model, but emerges from the
recursive structure of lexical access and the need to process unfamiliar words. Nonetheless it may
form part of the explanation of how distinct words become assimilated into a single word over
time, for example don't know — dunno (Scheibman, 2000). Of course this process necessarily
involves a production component with phonological/prosodic reduction (Bien, Levelt, & Baayen,
2005). However, in order to produce these two words as a single one, it is first necessary to
perceive them as a functional unit, i.e. to parse them together in perception. Supposing that the
prelexical parser consistently segments out this sequence, the lexical access mechanism will posit
the whole form don'tknow even if it is able to decompose this sequence into its two components.
As the phrase don't know continues to be experienced at higher-than-expected rates, the holistic
parse don'tknow may become more and more probable, so that eventually it competes with the

compositional parse in perception.

Parse probability and decomposability
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In addition to identifying parses, the lexical access mechanism assigns probabilities to
distinct parses. This is done both for theoretical and for practical reasons. Theoretically speaking,
a distribution over parses is desirable because it provides a way to account for gradience in
decomposability, as discussed in more detail below. Practically speaking, it is easier to evaluate a
single parse, and assigning a probability distribution provides a principled way to select the best
one. Thus, some confusion may arise as to the cognitive stance I am taking. To be clear, I believe
that the human lexical access mechanism does assign a probability distribution over possible
decompositions of its input, and that the full distribution plays an important role in lexical
processing. However, for evaluative purposes, I only use the probability distribution to select the
single most likely decomposition. Thus, I will begin by explaining why it is theoretically
desirable to compute a distribution over parses, and then I will lay out a theory by which the
learner may do this.

It is theoretically desirable to compute a probability distribution over parses because,
among other things, such a distribution would provide a neat account of gradience in
decomposability judgements. For example, Hay (2003) found that in pairs like unleash/unscrew,
the relative frequency of the base and derived forms was a strong predictor for relative
decomposability judgments; specifically, complex forms which were more frequent than their
base (unleash) were rated as less complex than complex forms which were less frequent than
their base (unscrew). A similar effect obtains even when junctural phonotactics are matched, e.g.
swiftly/softly. This gradience in decomposability judgements is a mystery if it is assumed that

both words are fully decomposed or fully undecomposed in listeners' mental lexicons. However,
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it can be accounted for straightforwardly if we assume that listeners assign probabilities to both
the decomposed and undecomposed forms. A more decomposed judgement could be represented
by assigning higher probability to the decomposed parse, and a less decomposed judgement
could be represented by assigning lower probability to the decomposed parse.

The same general argument applies for other factors which are correlated with
decomposability. For example, Hay & Baayen (2002) illustrate a 'productivity cline' for 80 affixes
in English. This gradience in productivity can also be accounted for by assigning a probability
distribution over both wholistic and decomposed forms.

A final argument for representing a probability distribution over parses comes from
analogy with syntax. Bod (1998) argues at length for representing a distribution over multiple
syntactic parses of the same sentence, and implementations of this theory have had remarkable
success in explaining acceptability judgements (Bod, 2001), ambiguity resolution (Bod, Scha, &
Sima’an, 2003) and construction learning (Borensztajn, Zuidema & Bod, 2008) . To the extent
that morphological and syntactic structure are similar (or identical, as assumed in Halle &
Marantz's (1993) Distributed Morphology), the same idea should hold for morphological
structure as for syntax.

For simplicity, I use a unigram model to assign the probability of a decomposition. That

18,

p(w; + wy + ... + w,) = p(w;) - p(wy) - ... - p(wny) (5.1)



For example, the probabilities of the two parses of 'captain’ are shown below:

k{ptEn k{ptEn
[\ I
p | k{p tEn| =p(k{p)-p(iEn) p | k(ptEn |= p(k{ptEn)
| | I
‘cap’ 'ten’' 'captain’ (5.2)

In general the probability of a word is proportional to its frequency:

p(w) = f(w)/F (5.3)

where F is a normalizing constant chosen to make p(w) a true probability distribution. In the
simplest case, F'is simply be the sum of the frequencies over all words.
It may prove instructive to apply this theory to the unleash/unscrew example from Hay

(2003) discussed above. She lists the following frequencies:

f(eash) = 16 f(screw) = 187

f(unleash) = 65 f(unscrew) = 44 5.4

197

Since un- is the same morpheme in both contexts, let us assume it has some constant probability

p., and not worry about the precise value. Then the probabilities of the decomposed vs. whole
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word parses for the complex forms are:

p(unscrew) = f(unscrew) / F =44/F

p(un+screw) = p(un) - p(screw) = p,, - 187/F

p(unleash) = f(unleash) / F = 65/F

p(un + leash) = p(un) - p(leash) =p,, - 16/F (5.5)

If only a single decomposition is selected as the winner, it must clearly be the whole word parse

in unleash, since 16/F < 65/F and p,, < 1 implies that p,, - 16/F < 16/F. The same does not hold
true in the case of unscrew, or rather it depends on the precise value of p,,. Thus, in a minimal
sense, this theory captures the greater decomposability of unscrew.

It is possible to do better than this with more specific assumptions about decomposability.
For concreteness, let us assume that 'decomposability’ is the log odds of the decomposed parse to

the whole parse. Then

d(unscrew) = log (p(un + screw)/p(unscrew)) d(unleash) = log (p(un + leash)/p(unleash))
= log ((p.,- 187/F)/(44/F)) = log ((p,, - 16/F)/(65/F))
=log (p,, - 187/44) =log (p,,- 16/65)

= log p., + log (187/44) = log p.. + log (16/65)
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d(unscrew) — d(unleash) = log p,, + log (187/44) — (log p., + log (16/65))
= log (187/44) - log (16/65)

>0 (from properties of logs) (5.6)

According to these assumptions, unscrew is predicted to be more decomposable than unleash,
regardless of the precise value of p,, of F; in fact, these terms simply cancel out because the
prefix and total frequency mass are the same in both forms.

Note that the present theory does not actually decompose complex words unless their
constituent morphemes are listed in the lexicon. For example, if in (the preposition) is listed but
un (the prefix) is not, then the lexical access mechanism will posit in+fected as one parse for
infected, but not un+screw as a parse for unscrew. I will defer the question of whether complex
words should be decomposed for the time being, returning to it when I discuss word learning

proper.

Reserving frequency mass for novel words
As stated above, the simplest way to calculate the probability of a word is to divide its

frequency by the total frequency of all words F

p(w) = f(w)/F

F =2 ueo f(w) (5.7)



200
However, this would assign zero probability to any word that had not been encountered yet;
whereas we do encounter new words throughout life. As discussed at length in Baayen (2001),
most individual linguistic events that could happen are quite rare, but taken together they have a

significant impact on the statistical behavior of the lexicon, and how speakers process language.
Baayen (2001) shows that the probability of encountering a new word p, is well-predicted by the
relative frequency with which a novel word of frequency 1 (the hapax types) has been observed

before:

Pv = Phapax /'F

Mhapax = I{ WEQ | f(w) = 1} (5.8)

It follows that the appropriate normalization constant F is the sum of the observed frequency

mass (sum over words) and the number of hapaxes (estimate of unobserved mass):

F = nhapax + Zwe_() f((U) (59)

Lexical phonotactic model

Note that the probability mass that is reserved for new word forms must be distributed
somehow over all possible forms, i.e. a lexical phonotactic model. Ultimately this should be done
with a probabilistic phonotactic learner, such as the one presented in Hayes & Wilson (2008). For

simplicity, I adopted the same solution adopted by Goldwater (2006): a generative model which
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first generates the length of a novel word according to a geometric distribution, together with a

uniform unigram model that assigns equal probability to every sequence of phones:

p(wy = pi¢ha...pn) = (1-py) " py - (11Dl (5.10)

where p, is the context-free probability of a word boundary,* |®| is the number of phones in the

language and 1/I9| is the corresponding uniform probability of observing a phone. Note that this
geometric distribution conservatively assigns lower probabilities to longer words.

Although crude, this model meets the minimal criteria for assigning probabilities to
parses: it assigns higher probabilities to parses made up of higher-frequency sub-parts, it assigns
an empirically reasonable probability of encountering new words, and it assigns a well-defined
probability distribution over new wordforms. Note that assigning a probability that an input

sequence contains a new word is not the same as actually learning the novel sequence as a word.

Summary

The preceding subsections described a theory of lexical access, in which input from the
prelexical parser is further decomposed into known words or identified as unknown; more
specifically, probabilities are assigned to all possible decompositions on the basis of the relative
frequencies of their sub-parts.

The ultimate goal is to integrate this theory of lexical access with both the learning theory

39 As discussed in Chapter 4, I assume this value is available to the learner through prosodic cues and/or prior
expectations about word length.
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of prelexical parsing from the previous chapter, and a theory of word learning. The ideal
bootstrapping model would consist of a DiBS parser and a lexicon, both of which develop in
response to language input. The DiBS parser might be modeled as a 'mixture' of the phrasal and
lexical models, and would correspondingly develop in two ways. First, the phrasal component of
the parser should improve its diphone statistics incrementally as more input phrases are
encountered. Second, as words are learned, the lexicon component of the parser should improve
its diphone statistics, and be correspondingly weighted more strongly. Finally, as more words are
learned, the lexical access mechanism should be able to make an increasing contribution in
decomposing the input.

However, performing this integration in one fell swoop is vulnerable to problems arising
from 'too many moving parts', i.e. the behavior of the model as a whole cannot be understood
without understanding the behavior of each of the parts and their interaction. Thus, the next
section describes an experiment whose goal is to verify the adequacy of the lexical access theory
when it is integrated with a DiBS parser, without the additional complication of word learning,
which can be sidestepped by equipping the learner with a full lexicon to begin with. (A full

bootstrapping model will be presented later in this chapter.)

Corpus Experiment VII: Verifying the theory of lexical access
Before integrating this theory of lexical access into a full bootstrapping model, it is
important to verify that it works in a simpler setting. Thus, this experiment is designed to assess

the effect of the lexical access mechanism on word segmentation. The canonical scenario for
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models of lexical access is one in which the listener already knows all the words they might
encounter (e.g. McClelland & Elman, 1986; Norris & McQueen, 2008). This scenario can be
realized here by chaining baseline-DiBS to the lexical access mechanism, i.e. by supplying the
partially parsed output of DiBS as input to be further decomposed in lexical access. The results
of this, called the base condition, will illustrate whether the lexical access mechanism is truly
adequate for decomposing speech into words in the best-case, supervised scenario.

It is possible to come a step closer to full boostrapping using phrasal-DiBS instead of
baseline-DiBS. In this case, even though the lexicon is fixed, the parser can adapt and change
incrementally as it is exposed to more and more language input. The results of this, called the
phrasal condition, will illustrate whether the success of lexical access depends on the high
quality parsing afforded by baseline-DiBS. In other words, if much worse performance is
obtained in the phrasal condition than in the base condition, it would be clear that the reason was
the poorer quality of prelexical segmentation. Conversely, if comparable decomposition were
obtained in the phrasal and base conditions, it would license the conclusion that the lexical
access mechanism is not too adversely affected by getting input from phrasal-DiBS instead of
baseline-DiBS. (Note that this experiment does not correspond to any natural learning situation,
since the parser begins with little language experience, like an infant, whereas the lexicon is
adult-like. The ability to conduct such 'thought experiments' is one of the great virtues of model-
based research.)

This information will prove invaluable in interpreting the results of the upcoming

bootstrapping model. To appreciate this, suppose that the bootstrapping model fails, i.e. exhibits
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very poor decomposition and/or by and large fails to learn words to which it was exposed. To
what component or interaction should this failure be attributed; and more importantly, what
could such a failure tell us about the acquisition of word segmentation? If we can be confident in
the lexical access mechanism when it has a sizable lexicon, then such a failure would strongly
suggest a failure in the word learning mechanism specifically. If the lexical access mechanism is
not tested in this way, then failure of the bootstrapping model would be much harder to interpret.
It could arise from a deficiency in the word learning mechanism, or it could result from a
deficiency of the lexical access mechanism, or from some unforseen interaction. Such a failure

would not be very informative.

Corpora
The phonetic transcription of the BNC was used, as described in previous chapters. The
equivalent experiment with the RNC was omitted owing to the computationally-intensive nature

of this experiment.*

Method
Sample set. Each corpus was divided into samples consisting of an equal number of
phrases. The number of phrases per sample was set to 4,000. This number was chosen as a coarse

approximation to the amount of speech input that a typical infant might receive in a single day.

40 Specifically, the lexical access algorithm requires a recursive lexical search, with the result that the search time
increases super-linearly with the length of the sequence-to-be-decomposed, and exponentially with the number of
distinct items in the lexicon. Russian is therefore more computationally-demanding on all fronts. First, Russian
words are longer in general. Second, DiBS parses Russian phrases into sequences consisting of more underlying
words, because it undersegments Russian more than English. Finally, owing to the rich morphology of Russian,
there are many many more distinct types in the RNC (824132) than in the BNC (67034).
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The motivation for this sample size is that a typically-developing English infant might be exposed
to about 30,000 wds/day (see Chapter 2, Appendix B for the rationale behind this estimate) and
phrases (in the BNC) consists of an average of 7.5 words.

Just to be clear, 4,000 phrases/day was selected because it is a standardized amount of
input in rough correspondence with the amount of input that English infants might hear in a day.
This is not a strong claim that infants hear exactly this much input every day, with the implication
that 'number of samples' is fully equivalent to number of days of input exposure. In fact, it stands
to reason that the exact amount of input that a given infant receives will vary widely according to
a host of factors, and will differ across infants and days. In fact, this kind of variation even occurs
in the BNC, as the number of words in a phrase may vary throughout the corpus (e.g. as a
function of genre), and so the input will exhibit some natural variation in numbers and types of
words per sample.

In each condition, the model was first exposed to 180 samples, corresponding to roughly
6 months of language experience. The model was then further trained on an additional 180
samples, corresponding roughly to the second 6 months of language exposure. During this
'second six months', the model was evaluated every 30" sample, i.e. representing one-month
samples. Thus, language exposure is indicated in 'months', with the understanding that there is
only a rough correspondence between these months and infants' language exposure in the first

year.

Farser. The baseline-DiBS parser of Chapter 2 and the phrasal-DiBS parser of Chapter 4
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were used.

Lexicon. The lexical access mechanism was equipped with the full lexicon that is

observed in the input corpus, including the frequency of each word.

Processing. The phrases in a sample were processed iteratively. Each phrase was stripped
of its word boundaries and then passed to the parser, which posited hard word boundaries at the
MLDT (.5). This parsed the sequence into several putative words. Each such 'word' was then
passed to the lexical access mechanism, which attempted to decompose it into a sequence of
items from the lexicon as described in the preceding section of this chapter. Thus, there are three
sequences of interest: the original sequence, the prelexically parsed sequence, and the
decomposed sequence after lexical access. An example is shown below for illustration, with the

corresponding orthographic representation listed on the right:

(14)  original: h6 d5z It @fEkt ju 'How does it affect you'
parsed: h6d5z It@fEktju 'Howdoes itaffectyou'
decomposed: h6 d5z It @fEkt ju 'How does it affect you'

Results

The prelexical parser's performance on a sample was evaluated by calculating signal

detection statistics on the parsed sequences (with reference to the original). The whole system's
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performance on a sample was evaluated by calculating the total number of hits, etc.. on the
decomposed sequences. Thus, for each sample, there are two sets of numbers: the parsing
performance when just the prelexical parser has applied, and the further decomposed sequence

after lexical access has applied.

Effect of lexical access on segmentatior Effect of lexical access on segmentatior

1 1
v X
0.8 l 0.8
0.6 0.6
% B phase g ’ > phrasal
= 04 V base+lex = 04 M phrasal+lex
e ~
0.2 0.2
0 0
0 0.10.20.30.40.50.60.70.80.9 1 0 0.10.20.30.40.50.60.70.80.9 1
false alarm rate a E false alarm rate

Fig. 5.1: Effect of lexical access on segmentation with (a) baseline-DiBS and (b) phrasal-DiBS

Discussion

The results in the base condition illustrate several facts. Perhaps most importantly, they
illustrate that the combined operation of DiBS and the lexical access mechanism result in near-
ideal decomposition. That is, not only does it typically correctly decompose sequences such as
howdoes into their consituent words (raising the hit rate to near-ceiling), it typically correctly
doesn't decompose sequences such as infected which contain an embedded word (failing to raise

false alarm rate). A second point concerns variability among samples. Specifically, the observed
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variability is relatively small, suggesting that DiBS is robust to genre variation.

The results in the phrasal condition are similarly informative. First, the tight cluster of
points corresponding to phrasal-DiBS without lexical access is highly consistent with the
segmentation performance yielded by phrasal-DiBS in Chapter 4. This is a highly promising
finding, since the parser in Chapter 4's experiment was trained on the entire corpus, whereas the
parser here is trained incrementally. This indicates that phrasal-DiBS can achieve its near-ceiling
performance with a relatively small amount of training data, as intended; more specifically, it
achieves near-ceiling segmentation by the time it has received roughly 6 months' worth of
language input. Second, and equally importantly, the effect of lexical access is almost the same in
the phrasal condition: near-ideal decomposition is achieved.

Together, these results suggest that the lexical access mechanism is robust to variation in
the prelexical parser, as long as the error pattern it exhibits is undersegmentation. This follows
from the fact that the degree of undersegmentation is significantly worse in phrasal-DiBS than
baseline-DiBS, but this difference had almost no effect on the kind of decomposition that was
ultimately achieved. As a result, it is safe to conclude that the lexical access mechanism achieves
superior decomposition when equipped with a full lexicon.

Corpus Experiment VII has moved an important step closer to a full bootstrapping model
by verifying the efficacy of the lexical access mechanism proposed in this chapter. The results of
this experiment show that the lexical access mechanism exhibits superior decomposition in a
typical adult lexical access scenario, in which the listener is familiar with all the words they hear.

The results further show that the lexical access mechanism is robust to variation in the quality of
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its input: as long as the prelexical parser exhibits undersegmentation, nearly-ideal decomposition

will be obtained.* It only remains to develop a word-learning theory, to which I now turn.

Toward word-learning

For the purposes of this dissertation, word-learning consists of entering a wordform into
the mental lexicon, i.e. recognizing that a given form corresponds to a true word. Although there
is a vast body of research on word learning (for a recent overview see Hall & Waxman, 2004),
much of it focuses on other questions, such as what kinds of meanings infants attribute to novel
words (e.g. Booth & Waxman, 2003), what kinds of meanings are easy to discover from
contextual cues (e.g. Gillette, Gleitman, Gleitman, Lederer, 1999), and what kind of social
support infants receive in learning word meanings (e.g. Baldwin, Markman, Bill, Desjardins,
Irwin, & Tidball, 1996). Comparatively little research has focused on word-learning in the sense
defined above, which for clarity I will call wordform learning. Before describing a theory of

wordform learning, I will summarize the relevant research.

Previous research on wordform learning

Much of the available research on wordform learning, as I have defined it, is focused on
properties of word learners rather than on formal properties of words themselves. For example, a
number of studies have shown that short-term memory and expressive vocabulary contribute

independently to predicting word-learning (e.g., Gathercole, Hitch, Service, & Martin, 1997;

41 T assume that the prelexical parser continues to operate in adulthood. In part this is motivated by the more
general assumption of a continuity theory of development. More practically, even adults may benefit from
prelexical segmentation, for example when they are in a discourse setting such as a classroom in which they
encounter many novel words.
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Henry & MacClean, 2003; Masoura & Gathercole, 2005; Majerus, Poncelet, van der Linden, &
Weekes, 2008).

It is possible or likely that multiple mechanisms mediate these effects. For example,
Storkel et al (2006) shows dissociable effects of sublexical phonotactic probability and lexical
neighborhood density on new word-learning. This finding is predicted under the two-stage
framework assumed here (see Chapter 1 for further explication) with the additional assumption
that distinct memory processes are at work in prelexical versus lexical speech processing (e.g.
buffering a sublexical phonological representation versus establishing a long-term lexical
phonological representation).

A final point of special relevance for infant learning concerns pronunciation variability.
Swingley and Aslin (2000) used an eye-tracking paradigm to assess 18-month-olds' interpretation
of variants of familiar words which could only be phonemically distinct lexical items for adults,
e.g. baby/vaby. The results showed both that infants treated the variant as a label for the familiar
word (e.g. interpreted vaby as referring to the baby), and that they were much slower to do so
than with the canonical/correct pronunciation. These results are especially interesting in light of
the massive body of research documenting a general shift in phonological development in the
second six months of life, whereby infants begin to exhibit language-specific perception of
segments (e.g. Werker & Tees, 1984), robustly integrate a variety of prelexical cues for word
segmentation (Jusczyk et al, 1999b), and continue to acquire more and more words (Dale &
Fenson, 1996). These perception results suggest that infants know all or most of the phonetic

contrast system of their language, yet exhibit an incomplete mastery of licit allophonic variation,
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e.g. are still willing to treat [v] as an allophone of /b/ word-initially. Similarly, Werker, Fennell,
Corcoran, & Stager (2002) found that 20-month-olds but not 14-month-olds succeeded in
learning a minimal pair (bin/din) whereas even at the younger age infants can learn
phonologically dissimilar pairs (/if/neem — Stager & Werker, 1997). Together, these results
suggest that phonetic and/or phonological similarity presents a special problem for word learning
in early word learners. This is an active area of research on which we can expect to learn more in

the next few years. Thus, for the time being I turn to my own modeling proposal.

Proposal

As discussed in the introduction to this chapter, word-learning should be triggered by a
failure of lexical access. That is, in the course of processing speech input, the learner will first
parse her input prelexically; she will then initiate lexical access attempts at the onsets indicated
by the prelexical parser. Inevitably, some of these lexical access attempts will fail; specifically,
they will fail whenever the learner encounters a word she doesn't know (and may also fail if the
prelexical parser has over-segmented, which does occur though quite rarely). These forms, for
which the lexical access mechanism fails to match a known word item, are candidates for entry
into the lexicon. The essence of my word-learning proposal is that learners should add a
candidate to their lexicon when they are sufficiently confident that it is a legitimate word. Thus, a
word-learning theory should specify how a learner becomes confident that a candidate is truly a
word.

As a first, crude pass at this problem, I propose that a candidate wordform is added to the



212
lexicon if it occurs 10 times or more. To be more precise, the proposal is that every time the
lexical access mechanism selects the winning (maximum likelihood) decomposition, it
increments the frequency count of every word that is successfully matched, and also increments
counts for any novel/non-word candidates in the winning decomposition. When a candidates
count reaches 10, it is added to the lexicon. That is, instead of being treated as a nonword for the
purposes of lexical access (with a probability determined by the product of the prior probability
of a novel word and the lexical phonotactic probability of this new form), the candidate is now
treated as a word. Moreover, if the learner's parser depends on the lexicon, the new word now
figures into the calculation of DiBS statistics.

This proposal is inadequate in a number of respects. Perhaps most obviously, single-
exposure learning is attested in adults (e.g. Storkel et al, 2006). Second, formal properties of the
word itself do not directly make any difference to whether the word is learned; the only influence
of formal properties is indirect, insofar as they determine how it is segmented. In particular, no
memory effects (Masoura & Gathercole, 2005) or effects of confusability with existing words is
modeled, whereas English-learning 14-month-olds are known to interpret phonemically distinct
forms as realizing a familiar word (e.g. interpret vaby as referring to baby, Swingley & Aslin,
2000). In addition, phonotactic likelihood and lexical neighborhood density have been shown to
be important predictors of word learning (Storkel et al, 2006), which is unpredicted by this
proposal.

Faced with a proposal that is inadequate in these ways, it is tempting as a modeler to try

to find an alternative that is better somehow. While there are any number of alternative proposals,
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it is likely that any simple proposal would suffer from many of the same issues. For example,
word learning could be stochastic, i.e. when a learner encounters an unfamiliar wordform they
would learn it with some constant probability. This proposal would account for learning with a
single exposure, but, like the frequency-threshold proposal, it would not account for how formal
properties of a wordform affect its learnability. While it is tempting to try to model these other
formal and social factors, this would require a more complex model of word learning, which
would entail additional complicating and perhaps unmotivated design choices. The benefit of
choosing such a simple deterministic model as this one is that it is very easy to understand
exactly how it works in the initial modeling runs. If necessary, it can always be modified later.
This is the principal motivation for using such a simple model.

Moreover, despite its shortcoming, the frequency-threshold proposal does capture a
number of important properties of word-learning. One such property is that the probability of
knowing a word increases with its frequency; this is modeled straightforwardly by learning all
words whose exposure frequency exceeds some minimal threshold. Another property is that it is
easier to learn words that occur with strong junctural cues (Mattys & Jusczyk, 2001); this
property falls out from the parsing mechanism of DiBS, which makes candidates available to be
learned precisely because of their junctures. A final property, which could be regarded as the
limiting case of the juncture cues case, is that words are easier to learn if they occur at a phrase
edge (Dahan & Brent, 1999); this also follows straightforwardly from DiBS since only one

boundary needs to be estimated instead of both.
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Mixture-DiBS

In the full bootstrapping scenario described above, the infant begins with little language
experience and no lexicon. The only DiBS model which is well-defined in this case is phrasal-
DiBS. However, after the infant has begun to parse her input prelexically, she should be able to
learn some words, which can be modeled with the word-learning proposal described above. At
this point, the learner will begin to have access to lexical-DiBS. Note that while lexical-DiBS
yields better segmentation than phrasal-DiBS in the best case (Experiment V), it requires a
sizable lexicon to achieve its near-ceiling level of parsing (Experiment VI), whereas phrasal-
DiBS is at its ceiling before word-learning commences in earnest (Experiment VII). Then the
ideal developmental trajectory would be for the learner to rely on phrasal-DiBS initially, and then
to gradually shift to relying on lexical-DiBS as more and more words are learned. What is called
for is some way of combining the parsing statistics of these two DiBS models to achieve this.

The simplest way to do this is with a linear mixture, that is, a weighted average of the
phrasal-DiBS and lexical-DiBS. The resulting parser will be referred to as mixture-DiBS, and

has the form:

Poscre(# 1 XY) = (W Prasa # 1 XY) + i Proea # I XYW + W) (5.11)

where w,,., and w,, are the mixture weights for phrasal-DiBS and lexical-DiBS, respectively.

This leaves the question of how to determine the mixture weights.

One appealing option is to weight each parser according to the amount of data that
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underlies the statistics in each parser. In the case of phrasal-DiBS, this is proportional to the total
number of phrases the infant has experienced (since each phrase contributes once to the left-edge
and once to the right-edge distribution). In the case of lexical-DiBS, it is proportional to the total
frequency mass of the learner's lexicon (since each token contributes once to the left-edge and

once to the right-edge distribution). Thus:

w,,.. = number of input phrases

phrasa

Wy = Zwea F(w) (5.12)

Thus, mixture-DiBS is an incremental learner which is well-defined for any nonzero amount of
language input, and any size lexicon (including no lexicon). Moreover, mixture-DiBS initially
relies completely on its phrasal component when it has no lexicon, but gradually shifts to its
lexical component as more and more words are learned, a property which emerges naturally from
weighting by evidence. With all the components in place, it is possible to integrate them into a

full bootstrapping model.

Corpus Experiment VIII: Full bootstrapping
Corpus

The phonetic transcription of the BNC was used, as described in previous chapters.

Method
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Sample set. The corpus was divided into samples in the same way as in Corpus

Experiment VII.

Parser. The parser was mixture-DiBS, as described above. During the just-learning phase,
the parser's statistics were updated on the basis of language exposure. During the next phase, two
steps occurred after presentation of each learning sample. First, any word candidates which met
the word-learning criterion were added to the lexicon. Second, the parser's statistics were updated

according to the additional input (the sample) and any additional words that were learned.

Results
As in the previous experiment, the prelexical parsing and decomposition after lexical

access are plotted on an ROC curve.
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Fig 5.2: (a) Segmentation ROC of bootstrapping model and (b) its vocabulary growth.
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Discussion

Two facts are evident from Fig 5.3. First, the system as a whole exhibits rather aggressive
oversegmentation, as evident from the false alarm rate of about 40%. Second, the prelexical
segmentation mechanism alone exhibits undersegmentation.

By itself, the first fact is not necessarily troubling. It is possible that the lexical access
mechanism is discovering meaningful sublexical units, i.e. affixes and stems. Since these items
have their own meaning (even if non-compositional), it is a reasonable outcome if the system as a
whole ends up positing them as separate lexical units. However, it is also possible that the system
is oversegmenting in a different way; i.e. non-meaningful units. Note that the CELEX lexicon on
which the phonetic transcript of the BNC was built does not contain a morphemic decomposition
of its words. Thus, it is not possible to use this resource to determine what percentage of 'words'
found by the bootstrapping model are meaningful units. However, some insight on this question
can be gleaned by inspecting the parsing output of the system, and the high-frequency words it

learns.

Parsing output. The end-behavior of the system is illustrated below with four phrases
taken from the final testing sample. The top line gives the underlying orthographic sequence and
the next line (original) gives the phonetic transcription with the correct word boundaries
indicated as spaces. The next line (parsed) indicates the word boundaries identified by the

prelexical parser. The line below that (decomposed) indicates the word sequence identified by the



lexical access mechanism. The final (ortho) line indicates an orthographic transcription of the

decomposed line:

)

(18)

19)

(20)

ortho:
original:

parsed:

decomposed:

ortho:

ortho:
original:

parsed:

decomposed:

ortho:

ortho:
original:

parsed:

decomposed:

ortho:

ortho:
original:

parsed:

decomposed:

A commitment to an economic
1 k@mltm@nt tu {n ik@nQmlk tr{nsf@mlISH wID sEvr@] k@mp5n@nts

lk@mlt m@nt tu {nik@nQmlktr{ns f@ml1SH

transformation with several

wl DsEvr@] k@mp5n@nts

218

1 k@mlt m@nt tu {nik@nQmlk tr{ns f{@mISH wl DsEvr@] k@m p5 n@nt s

a commit ment to an economic trans formation wi thseveral

government was best
gVvHm@nt wQz bEst
gVvH m@nt wQz bEst
gVvH m@nt wQz bEst

govern ment was best

two years earlier
tu j7z 317R
tuj7z317R

tu j7z 317R

two years earlier

on a more limited franchise
Qn 1 m$R IImltld fr{nJ2z
Qnim$R 1ImItld fr{nJ2z

Qn 1 m$R I mitld fr{nJ2z

com po nent

N
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ortho: on a more li mited franchise

As evident from these phrases, many of the sublexical units that the system discovers are
indeed meaningful. For example, the system has correctly identified the words a, to, an,
economic, was, best, two, years, earlier, on, more, and franchise. In addition it has identified
-ment, which is a meaningful affix, and has segmented it off from commit and govern, both of
which can occur as separate words without -ment; similarly it has segmented trans- off from
formation, which can occur as a separate word. So the system has considerable success in
identifying the meaningful units in this sample.

At the same time, the system exhibits some notable failures. In particular, it decomposes
components into com+po+nent+s. The affixes com- and -s are meaningful affixes in English, but
neither po nor nent are. Similarly, the system incorrectly decomposes limited into li and mited.
The former item is recognizable as the adverbial ending -Iy (which is realized with the lax vowel
[1] in British RP, the phonetic standard for CELEX), but mited is certainly not a meaningful word
in English. Tentatively, then, it can be concluded that the model is too aggressive in
segmentation, which results in learning not only linguistically meaningful sublexical units (-
ment, -ly, trans-, -s), but also linguistically unprincipled sublexical items (-po-, -mited).

This conclusion is all the more interesting given the evidence that the prelexical
segmentation mechanism undersegments. One potential concern with the bootstrapping model is
an 'error snowball' in which some oversegmentation errors cause sublexical units to be learned as
words, which alter the statistical signature of word boundaries in the lexicon, thereby causing the

prelexical parsing mechanism to oversegment more. This appears not to happen even though the
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system learns a number of sublexical units as words. In other words, the results of Experiment
VIII suggest that the prelexical parsing mechanism is robust against this kind of error snowball.
Rather, oversegmentation appears to be driven entirely by the lexical access mechanism — more
specifically, it is overly aggressive in learning sublexical items as words. One simple way to see
which sublexical items are learned is to investigate the highest-frequency 'words' the system

learns.

Lexicon. The 100 most frequent lexical items acquired by this system (at the end of the

final sample) are given below:

word | freq |word| freq |word| freq | word | freq | word | freq

] 489924/S 136341|{n 57652 30045h{d 23691
I 451967|IN 131304 /Dit 57415#R 29954/n5 23559
k 402528\v 123315|g 56896 hlz 29220r@ 23410
Di 3774121z 112208 |bi 56644 /s5 29109|\wlJ 22447
d 371569i 102174/@nt 55826 |Ent 28746|wi 22207
t 36939611 94048f$R 54756/ @d 27948|@rl 21920
p 324217 92671\J 53427/D1 279316t 21429
1) 314078/% 90936|wQz 50003 h{v 27833 7/ 21352

m 300372|It 90056 $ 48948(@s 27674|El 20845
I 241273/H 88031|{t 46817|frQm 27247\w3R 20550
In 231210|@R 87345|@t 46584 nQt 27200[w2 20077
213113jju 81725@m 44767|Es 2678712 19905

201908]11 80682|{z 41194|bl 26550|Its 19441

Qv 185551\D 79882 $R 40487|@ns 26400|ld 18945
{nd 172134 5 78667|@z 39304/wVn 26043|@ll 18871
f 168578 P 73101|b2 39015u 25985h3R 18785
tu 165186/b 71658|If 35156 hi 25391r1 18599
2 160120/wl 65126|En 34779 bVt 25309 Em 18376

@ 153178/Qn 64199 T 34360/Vn 25015|r2 17541
st 142035 @n 60477 # 31425DIs 24615|r5 17329

Table 5.1: The 100 most frequent lexical items learned by the bootstrapping model
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The first several 'words' include [s], [t], [d], [Di], and [In], which are recognizable as
allomorphs of the plural/possessive marker -s, the past tense marker -ed, the definite article the,
and the preposition in. In addition, the most frequent 'words' include a number of functional
items including a, to, of, and, and -ing. Similarly, the items [1], [v]. and [m] are recognizable as
licit contractions following I and some other pronouns (I'll, I've, I'm). On the basis of these items,
the system must be counted as a partial success for identifying meaningful elements.

However, there are a number of items which clearly do not correspond to meaningful
units. For example, [k], [f], and [n] in the first column are not words or other meaningful units in
English. Similarly, in other columns [g], the voiced palato-alveolar affricate (transcribed [_]), [b],
and the voiced inter-dental fricative [D] are not words or other meaningful units of English. It is
evident from these 'words' why the system oversegments — there are too many single-consonant
‘words'.

The results of Experiment VII are useful for interpreting this result. Recall that in
Experiment VII, in which the learner was supplied with the correct lexicon to begin with, nearly
perfect segmentation was achieved, regardless of whether the prelexical parser was phrasal-DiBS
or baseline-DiBS. This suggests that when the lexical access mechanism is equipped with the
proper lexicon, it functions properly (as long as the prelexical parser undersegments). The
implication for the present case is that the lexical access mechanism is oversegmenting because
too many improper/sublexical units have been admitted into the lexicon. The solution, then, is to

somehow block sublexical units from being admitted to the lexicon.
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As a first, crude pass at this problem, I implemented a single word-learning constraint: a
lexical candidate must contain a vowel to be entered into the lexicon. The results from running

this adjusted bootstrapping model are described below in Corpus Experiment IX.

Corpus Experiment IX: Full bootstrapping with word-learning constraint
Corpus

The phonetic transcription of the BNC was used, as described in previous chapters.

Methods
The method is identical to Corpus Experiment VII, except that a constraint was added to

the word-learning mechanism: words could only be learned if they contained a vowel.

Results
As in the previous experiment, the prelexical parsing and decomposition after lexical
access are plotted on an ROC curve. Beside this, the total vocabulary size is plotted along with

the number of items which correspond to wordforms in the original corpus.
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Bootstrapping-DiBS Vocabulary growth
1 7000
& 6000 u
08 n u
§ 5000 u
0.6 o
= 4000 [ |
% l B prelexical 5 ® ¢ & Eyyy
= A ~ 3000 u 2 2 I’
= 04 prelex+lex 5} V'S correct
<= Qo
E 2000 L 2
0.2 z
1000
0 oM
0 0.10.20.30.40.50.60.70.80.9 1 6 7 8 9 10 11 12
false alarm rate a E Language exposure (months)

Fig. 5.3: (a) Segmentation ROC of bootstrapping model w/ vowel constraint and (b) its

vocabulary growth

Lexicon. As in the previous experiment, the 100 most frequent lexical items learned by

the system are given below.
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word | freq word | freq | word | freq | word | freq | word | freq

Di 337536|{n 40635/s! 25205/@z 16477 m$R 13126
I 173645|bi 40471 p@ 24787|hu 16373 kVm 13045
In 168724 {t 39100DIs 241672m 16200|12 12375

1) 162812b2 38883 k@n 24146ftld 16023 k@m 12331
{nd 162196|{z 38368/$R 23779wUd 15766/nju 12157
tu 132041|9l 36060 h{d 23663|bin 15706|Si 12079
Qv 129610$ 35415/n5 23652/mi 15662/nl 11954
@ 107960/Qn 30816 5 22894|h{z 15620 @d 11562
Iz 85042/@R 29596\wlJ 22306|wll 15171(d1 11487
IN 78097|s5 28289 |wi 22159|sVm 15123 h6 11241
I 72947 hiz 28057|si 21059/2d 14842\D5 11106

2 72603/D1 28046/w3R 20510|If 14805\wQt 11093
wl 62126#R 27839m@nt 18955|Dis 14760hIm 11035
rl 60679/h{v 27700/{k 18458 k{n 14563\Vp 10974
It 59952|nQt 27110/dIs 18240|lts 14463 kQn 10915
Dit 55159 bVt 27089h3R 17920w2 144442k 10907
f$R 53106|frQm 26326t 17805m2 14440\Vn 10888
wQz 49778|bl 26132m1 17037|6t 13725dld 10775
ju 45297 hi 26094 D8R 16602/w1 13391mEn 10726
dl 42473wVn 26002/wEn 16491|D8 13329 |Dfn 10587

Table 5.2: The 100 most frequent lexical items learned by the

bootstrapping model with vowel constraint

In comparison with the previous experiment, the most frequent 'words' learned by the
bootstrapping model with vowel constraint are much more satisfactory. Of the ultra-high
frequency items in the first columns, all are clearly recognizable as meaningful units of English
except [@] and [I], and an argument could be made for the latter as an adjectival/diminutive
marker (happy, pretty, ready, Bobby, Johnny, Kathy, Christy). For clarity, the units of the first

column are given in conventional orthography:

(21) [Di] the [In] in [1] a [{nd] and
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[tu] 10 [Qv] of z] s [IN] -ing
-y 2] I [WI]  we (1] re-
] it [D{t] that [f$R] for [wQz] was
ljul  you [di]  de-

Interestingly, but perhaps not surprisingly, all of these ultra-frequent items are function
words (prepositions, determiners, copula, pronouns) or function morphemes (adverbial marker,
progressive marker) except re- and de-. This is perhaps unsurprising because these are some of
the most high-frequency items of the language; if the system is learning words at all, these are
some of the ones it will get the most exposure to. It is nonetheless an interesting finding that the
system identifies so many functional items, since many these items are systematically absent in
infant productions before the age of 2 (Guasti, 2004), which has led some researchers to posit
that infants lack any formal representation of functional items (e.g. Wexler, 1994), although a
growing body of evidence suggests that infants are sensitive to functional items in perception
well before they begin to produce them (Shady & Gerken, 1999; Mintz, 2003; Peterson-Hicks,
2006; Shi, Cutler, Werker, & Cruickshank, 2006; Shi, Werker, & Cutler, 2006; Soderstrom,
White, Conwell, & Morgan, 2007). The fact that this system identifies so many functional units
highlights the importance of further research on infants' knowledge of functional morphemes.

Some further insight on the system's behavior can be gleaned by inspecting words from
the middle of the frequency spectrum. The words that the system learns with recognized

frequencies of 98 or 99 are given below in (22) (a * is used to indicate a non-word, and in cases
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where the non-word is a recognizable sub-part of a real word, the 'missing' letters are supplied in

parentheses):

(22)  [strVglIN] struggling [rEk@n] reckon [kiz] keys
[k3rIN] *(han)kering [h#vIst] harvest [frVstr1SH]  frustration
[_3n2lIst] Jjournalist [DI] *thi(s) [WEdIN] wedding
[spQndtu] (re)*spond to [sp@d] *sped [sk$t] (e)*scort
[s3kPz] circles [p{slv] passive [p21d] piled
[ndIt] (a)*nd it [kI{m] clam [¢QTIk] gothic
[dt@w$dz]  *d towards [bl2_d] (o)*bliged [J1] *chi
[pQpjUl{r@tI] popularity [s3v@tlvp#tl] (con)*servative party

[plEks@tl]  (com)*plexity

A reasonable proportion of these items are words, and many of the errors bear morphologically
transparent relationships to words. There are nonetheless phonotactically implausible items such

as the sequence [dt@w$dz] which contains an illegal onset cluster.

Discussion
Comparison of Fig 5.3a with Fig 5.4a shows a significant reduction in oversegmentation.
Whereas the system in Experiment VIII exhibited a false alarm rate of around 40%, the false

alarm rate in this experiment is a more modest 15%. Thus, the vowel constraint is substantially
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though not completely successful in blocking the aggressive oversegmentation apparent in
Experiment VIII. This fact supports the interpretation that oversegmentation was caused by the
entrenchment of single-consonant 'words' in the previous experiment.

Comparison of Fig 5.3b with Fig 5.4b shows another, perhaps more interesting outcome:
both the total number of words learned and the number of correct words are greater than in
Experiment VIII. This is a highly counterintuitive finding because relative to the previous
experiment, there are stronger constraints on learning a word, and yet more words are learned. 1

postpone further consideration of this for the general discussion.

Size of lexical inventory. One concern arising from these results is the relatively large
number of words that the system learns, as compared with what infants are purported to know.
As reviewed in Chapter 1, mother's reports suggest that English-learning infants' receptive
vocabulary contains on average about 40 words at 8 months, about 80 words at 12 months, and
about 180 words at 18 months. In contrast, the system here is learning on the order of 6000
words. With respect to this disparity, two remarks can be made.

First, the total vocabulary size that the system acquires can be adjusted by tweaking the
frequency threshold. For Experiments VIII and IX an arbitrary threshold of 10 was imposed,
based loosely on the fact that word-learning is evident in laboratory studies with about 10
exposures (e.g. 14-month-olds in Booth & Waxman, 2003). It is possible — indeed, it is likely —
that infants' word-learning ability increases developmentally, so that 6-month-olds require more

exposures to learn words than 14-month-olds. Of course, word-learning is not based only on
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number of exposures, so the theory is making a relatively crude simplification to begin with.

Second, one of the reasons the vocabulary size is so high in these results is because the
infants' lexicon includes a large number of function words and morphemes. These items will not
show up in estimates of (English-learning) infants' vocabularies, for the simple reason that many
function words (e.g. determiners, adverbs, he, we) and all bound affixes (-ing, -ed, re-, -en, -s) are
not listed on the MacArthur CDI forms (Dale & Fenson, 1996) which are standardly used to
assess infant vocabularies. Moreover, caregivers who fill out these forms are instructed to report
if their child understands the meaning of the word; as remarked repeatedly throughout this
dissertation, it is possible for an infant to know that a form is a word without understanding its
meaning. In other words, the results of this experiment could be interpreted as suggesting that
infants 'know' significantly more wordforms than contemporary vocabulary measures would

suggest.

General discussion
Summary
This dissertation began by introducing three related acquisition problems, of word
segmentation, word recognition, and word learning. Previous chapters have focused on the word
segmentation problem specifically, developing and testing a learning theory for prelexical word
segmentation. The goal of the present chapter was to broaden this research to address the other
two problems of word recognition and word learning.

This chapter began by arguing that under the assumptions adopted here, word learning
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must be mediated by the lexical access mechanism. Then, a theory of lexical access was
developed in which a probability distribution is assigned over exhaustive lexical decompositions
of an input sequence; for evaluation purposes, only the maximum likelihood decomposition is
used. This theory was tested by chaining DiBS to the lexical access mechanism, i.e. feeding the
output of the prelexical DiBS parser into the lexical access mechanism for further decomposition.
In Experiment VII, the lexicon was initialized to the full/correct lexicon; the results showed near-
ceiling decomposition. This means that the lexical access mechanism correctly identifies all and
only word boundaries that were missed by the prelexical parser; in particular, it does not
systematically decompose sequences like infallible into in + fallible, in which each of the
constituents can itself occur as a word. These results show that the theory of lexical access
developed here is adequate as long as the lexicon itself is appropriate.

The remaining sections were devoted to the word-learning problem and a full
bootstrapping model. As a first pass, Experiment VIII implemented a crude word learning
mechanism in which a 'candidate’ wordform was added to the lexicon once the lexical access
mechanism had attempted to access it 10 times. Experiment IX, the final experiment in this
dissertation, was identical to Experiment VIII, except with the added word-learning constraint
that a wordform could not be added to the lexicon unless it contained a vowel. While these
experiments are not strictly cognitively plausible, they are of considerable utility in illustrating
where the system succeeds, where it fails, and what must ultimately be done to achieve a better
model.

In the remaining subsections, I consider these issues in greater depth. First, I explore a
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highly counterintuive difference between the results of Experiment VIII and Experiment IX.
Specifically, even though there were objectively stronger constraints on word-learning
Experiment IX, the result was that a greater number of words were learned overall. After
considering this results in some detail, I outline some options for how to modify the lexical
access theory to address the shortcomings discovered here; for example, how to handle affixes.
Finally, I argue that this research highlights the need for a richer understanding of how listeners

learn wordforms specifically. Each of these are considered in turn below.

Effect of vowel constraint on word-learning

One highly counterintuitive finding of this chapter is more words were learned in
Experiment IX than in Experiment VIII, although there were stronger constraints on word-
learning in Experiment IX. The goal of this subsection is to explain this finding.

Perhaps the most important part of the explanation is the absence of morphological
structure in the lexical access mechanism. More specifically, the unigram model adopted here
means that the lexical access mechanism lacks the means to represent any relationships between
lexical items, such as morphosyntactic dependencies between 'heads' (stems, roots) and affixes.
In fact, the model does not even distinguish these as distinct categories. Items are simply in the
lexicon (with some frequency), or not. As illustrated by Experiment VII, this is not a problem if
the lexicon contains the 'right' words to begin with. But as illustrated in Table 5.1, the
unconstrained system of Experiment VIII isolates single-segment sublexical units like [s] as

possible words. In one way, this is a positive outcome, since [s] does indeed correspond to a
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meaningful unit (the plural/possessive marker) in English. The problem with the current system
is that when [s] is entered into the lexicon, there is nothing that marks it as appropriate for word-
final position only. In other words, it becomes possible to (incorrectly) decompose an [s] in other
word positions as well.

To see why this is a problem in Experiment VIII, suppose that the system has identified
[s] as a word and now it encounters the novel word struck [strVk], and let us further suppose the
learner has not yet learned the word fruck. According to the recursive lexical decomposition
process proposed earlier in this chapter, the lexical access mechanism should consider two parses
for this sequence. One parse consists of the whole form (residue) since the lexicon does not have
a lexical entry for it already. The other parse, beginning from the onset of the word, identifies the
unit [s] as one part of the decomposition and, failing to identify any subsequences matching the

residue -truck, posits the remaining residue -truck as a lexical item:

(22)  decomposition 1: w = [strVK]

decomposition 2: w = [8] + [trVK]

The first decomposition will be assigned a probability with terms for the probability of a new
word, the and the lexical phonotactic probability of this new word struck. The second
decomposition will be assigned a probability with terms for the familiar unit [s], as well as the

probability of a new word and the lexical phonotactic probability of the new word truck:
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p([strVk]) = p, - p(w, = [strVK])

=pv * (1-py) ps - (1/1BI)

p([s] + [trVK]) = p([s]) - pv-p(wy = [trVk])

= f([SD/F - pv + (1-py) ps~ (111’ (5.13)

where F is the frequency mass of the lexicon and 9| is the total number of phones in the
language. Which of these is the maximum likelihood parse can be determined by taking the

likelihood ratio:

p([s] + [trVK])/p([strVK]) = (f([S)/F - pv - (1-ps)ps- (ANDPD)) / (pv - (1-ps)ps - (1/1D1))
= 1([sD/F - 1DI/(1-ps)
= 802394/24344258 - 51/(1-.2618)

=2.277 (5.14)

where the specific values for f([s]), F, |®l, and (1-ps) are taken from the end-state of Experiment
VIII. This ratio indicates that the decompositional parse p([s] + [trVk]) is almost 3 times as likely
as the wholistic parse p([strVk]), so the more decomposed parse wins, re-inforcing the likelihood
of [s] to be decomposed in similar situations.

If the system already knows the word truck, the situation is similar, except that the more

decomposed parse is assigned even higher relative probability. This follows from the fact that the
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probability of a word p(w) = f(w)/F is almost inevitably higher than the probability of
encountering this same wordform as a new word p, - (1-ps)" ps- (1/1®l)’, that is p(truck) >
pv - p(w, = truck).

In summary, it is not necessarily a problem by itself that the system identifies [s] as a
meaningful unit. However, given that it identifies [s] as a meaningful unit, the problem is that
there is no morphological constraint which ensures that it is only identified in lexically
appropriate positions. The result in Experiment VIII is that a number of single-segment 'words'
are learned; owing to their great frequency they become entrenched, so that any novel words that
begin with these segments are decomposed into them and a sublexical residue. This explains the
'plateau’ in word-learning in Experiment VIII — many or most of the word tokens are decomposed
into small/phonological units (e.g. single segments), of which there are such a limited number
that the peak is eventually reached.

In contrast, the vowel constraint of Experiment IX prevents these single-consonant units
from being identified as words. As a result, the single-consonant words cannot become
entrenched. When novel words are encountered, there is less opportunity to overdecompose them,
and the system learns units that more closely resemble words according to the underlying corpus.
The vowel constraint actually promotes learning by forcing the system to not overdecompose, i.e.
forcing it to learn larger-sized units, which of course there are more of. This is why the system
learns more words in Experiment IX even though there are stronger constraints against word-

learning.
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Toward a better theory

Although the bootstrapping experiments in this chapter exhibited a number of notable
successes, they also exhibited some failures. In particular, the results of Experiment VII suggest
that when the learner is equipped with the 'correct' lexicon to begin with, the theory of lexical
access developed here achieves superior decomposition. In contrast, the comparison between
Experiments VIII and IX suggests that the lexical access mechanism is underconstrained. As I
suggested in the previous subsection, one underlying problem is an impoverished morphological
representation. The lexicon/lexical access mechanism adopted here does not distinguish affixes
from heads, and therefore is incapable of representing relationships between them. In other
words, the solution is to adopt a richer view of the lexicon.

Perhaps one of the best ways to model this richer structure, I will suggest, is to
incorporate a richer model of prosodic structure. Through this dissertation, I have attempted to
develop a probabilistic formalism which can readily be extended to richer structures. In
particular, the core domain considered in this dissertation is sequences of two phones (diphones),
but most of the key aspects of the model can work on arbitrary domains; I focused on the phone
domain because the evidence that infants attend to it is particularly strong (Mattys & Jusczyk,
2001).

In fact, I find it remarkable that the model is able to succeed as well as it does without
explicitly modeling lexical stress, syllabification, or prominence. The acquisition literature
suggests that at least for English, stress cues are used for segmentation even before other

phonotactic cues (Jusczyk, Houston, & Newsome, 1999). Moreover, native-language
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syllabification effects are evident even in highly proficient non-native speakers (Dupoux et al,
1999), which suggests or at least is consistent with the hypothesis that syllabification is
perceptually entrenched extremely early in development, perhaps before or during the rapid
phonological development of the second six months of life (see Chapter 1 for a review).

It is likely that the prelexical parser's performance could be substantially improved by
modeling the full prosodic hierarchy (Selkirk, 1984) rather than simply word boundaries. In turn,
the richer structure at the prelexical level can only improve parsing at the lexical level, owing to
the tight confluences between phonological and morphological junctures (Hay, 2003; Hay &
Baayen, 2002; Pierrehumbert, 2003). Similarly, a richer model of prosodic structure should result
in the opportunity for a more appropriately constrained theory of word-learning. For example, a
sufficiently rich prelexical representation of the prosodic word (Selkirk, 1984) may facilitate

distinguishing content words from function words in the model's input.

Conclusion

This chapter has outlined a theory of lexical access and a theory of word-learning, and it
has integrated them with prelexical parsing models developed in earlier chapters to make a first
pass at a full bootstrapping model. The results of the bootstrapping model reveal a pattern of
successes and failures that 1s highly informative for further research. Specifically, the results
suggest that prelexical parsing a la DiBS is remarkably effective, but that lexical access and
word-learning require a richer theory of morphological structure. Put more generally, it could be

said that this dissertation has pushed a relatively naive statistical approach as far as it will go: its
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more or less sufficient for prelexical parsing, but more sophisticated morphology is required for

lexical access and/or word-learning.
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CHAPTER 6. CONCLUSIONS
Abstract
This chapter begins by recapitulating the problem of the infant word segmentation
acquisition, and DiBS as a solution in a two-stage speech processing framework. Next, it reviews
the major accomplishments of each chapter in fleshing out and testing the proposal. Finally, it

reviews some of the open questions and issues of this research, and future directions.

Words are fundamental elements of language. In order to make use of words for language
comprehension and acquisition, infants must first be able to pick out one word from another as
they occur in fluent speech — the problem of word segmentation. In adults, this process can
plausibly be explained largely as an epiphenomenon of word recognition (McClelland & Elman,
1986; Norris & McQueen, 2008). However, infants between 6 and 10.5 months of age do not
know many of the words that they hear (Dale & Fenson, 1996; van de Weijer, 1998; Brent &
Siskind, 2001), whereas by this age they already demonstrate impressive segmentation abilities in
laboratory studies (Saffran et al, 1996; Jusczyk et al, 1999a; Jusczyk et al, 1999b; Mattys et al,
1999; Mattys & Jusczyk, 2001; Johnson & Jusczyk, 2001; Bortfeld et al, 2005). Thus, infants
must have access to some other speech segmentation mechanism besides word recognition, based
on prelexical cues such as phonotactics (Mattys & Jusczyk, 2001).

This fact, coupled with evidence of dissociations between sublexical and lexical factors in
speech processing (Vitevitch et al, 1997; Luce & Pisoni, 1998; Vitevitch & Luce, 1998; Vitevitch

& Luce, 2004), supports a two-stage view of speech processing in which speech input is assigned
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a phonological parse by a prelexical parser (or “Fast Phonological Preprocessor’)

(Pierrehumbert, 2001; Hay, 2003) and then further decomposed during lexical access:
prelexical
parser
lexical
daccess

morpho-
syntactic
parse

ftarojpevieliinieekspartiorxlopkavmiir

second-nom.s largest-
nom.s exporter-nom.s
cotton-gen.s in world-

prep.s
ftarojpevielicinie ekspartior xlopkavmiiri

Fig 6.1: Two-stage speech processing framework

The bidirectional links between the prelexical parser and the lexicon represent the
interdependency between these components of speech processing. In particular, the prelexical
parser should affect the lexicon by isolating novel wordforms for lexical acquisition (Davis,
2004), and the lexicon should project lexical phonotactics onto the prelexical parser for more

accurate phonological parsing, including word segmentation (Pierrehumbert, 2001;

Pierehumbert, 2003).
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This dissertation fleshes out this general framework by making and testing a proposal as
to the specific formal representations, knowledge content, and processing mechanisms of the
prelexical parser. DiBS — Diphone Based Segmentation — is predicated on the idea that the
presence/absence of a word boundary can be predicted by the immediate phonological context,
and more specifically by the identity of the phones immediately preceding and following the
possible boundary. Thus, DiBS assumes that the listener has access to a categorical
representation, e.g. phones, of the speech sounds in their speech input. It proposes that listeners
estimate the probability of a word boundary between every pair of phones that occur in the
language, i.e. for every sequence [xy] the listener calculates the probability of a word boundary
given [xy] p(# | xy). Finally, this knowledge is put to use in online speech processing by initiating
lexical access attempts at all locations in the speech stream with a high word boundary
probability.

The main body of this dissertation is devoted to working out the concrete details of this
proposal more specifically and testing it. To this end, a sequence of models is developed,
including baseline-DiBS, lexical-DiBS, and phrasal-DiBS. The first model, baseline-DiBS, is a
supervised learning model and therefore not appropriate for modeling (unsupervised) infant
acquisition; rather, it is an important proof-of-concept which was used to illustrate the
comparatively high level of segmentation that can be achieved by DiBS in the best case. The next
two models, lexical-DiBS and phrasal-DiBS, address the learnability issue by showing how to
estimate the DiBS statistics p(# | xy) using Bayes' Theorem from information that is or can

reasonably be assumed to be available to infants, including any words in the infant's lexicon and
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the distribution of speech sounds at phrase-edges. In Chapters 2-4, these models are tested on
phonetic transcripts derived from large corpora in English (the British National Corpus) and
Russian (the Russian National Corpus). Thus, the greatest focus of this dissertation is on the
prelexical parser specifically.

Ultimately, it is not just the acquisition of segmentation which must be explained, but the
interlocking relationship between word segmentation, word recognition, and word learning. Thus
in Chapter 5, models of lexical access and word learning are developed. These models are
integrated with the final DiBS model, mixture-DiBS, to form a full bootstrapping model.
Mixture-DiBS combines phrasal- and lexical-DiBS to model the changing effect of the lexicon

on the prelexical parser as more words are learned.

Summary of acquisition problem
Before considering this work in more detail, it is worth reviewing the motivation for it,
i.e. the infant's problem. Speech processing in infants is characterized by the following

properties:

1. Phrase-internal word boundaries are not consistently marked acoustically (Lehiste, 1960)

2. On average mothers report their infants know 40 words at 8 months of age and 80 words
at 12 months of age (Dale & Fenson, 1996)

3. During this period infants can segment unfamiliar words from fluent speech (Saffran et

al, 1996; Jusczyk et al, 1999a; Jusczyk et al, 1999b; Mattys et al., 1999; Mattys &
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Jusczyk, 2001; Johnson & Jusczyk, 2001; Bortfeld et al, 2005)
4. Only 10% of word types that infants hear are presented in isolation (Aslin et al, 1996; van

de Weijer, 1998; Brent & Siskind, 2001)

The first property is why there is a word segmentation problem at all; adults face this problem
just as infants do. However, unlike infants, adults know most of the words they encounter. Thus,
word segmentation in adults can plausibly be explained by word recognition, as in the TRACE
model of speech perception (McClelland & Elman, 1986) and related models (Norris &
McQueen, 2008). Owing to the second property, this kind of account is inadequate to explain
word segmentation, as infants appear not to know most of the words they hear. It has been argued
(Dahan & Brent, 1999; Brent & Siskind, 2001) that infants must hear a word in isolation or
adjacent to a familiar word to learn it, a position that is hard to reconcile with the significant
body of literature demonstrating segmentation of novel words from novel contexts (e.g. Saffran et
al, 1996; Mattys & Jusczyk, 2001). The fact that infants are only exposed to 10% of novel word
types in isolation, and yet end up learning most of the words they encounter, can only be
explained if infants learn words by segmenting them from fluent speech.

In other words, infants face a special speech processing problem because they don't know
very many words. Without a doubt, word recognition facilitates word segmentation (McClelland
& Elman, 1986; Bortfeld et al, 2005; Norris & McQueen, 2008), but in order to make use of this
segmentation mechanism, infants must first learn the word they are recognizing: word

recognition requires word learning. If it were the case that infants were exposed to many or most
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words in isolation, it would be easy to explain word learning without word segmentation.
However, as shown by both corpus (van de Wiejer, 1998; Brent & Siskind, 2001) and laboratory
studies (Aslin et al, 1996), infants do not hear most word types in isolation. The fact that they
learn them means that they must have segmented them out of fluent speech. In other words, word
segmentation precedes and supports word learning (Davis, 2004) rather than the other way
around. Or, more precisely, the earliest word segmentation appears to precede and supports the
earliest word learning, though once word learning has begun in earnest it can support and
improve word segmentation as well.

Thus, of these three interlocking speech problems, the evidence strongly suggests that
infants make the greatest progress on word segmentation first, presumably by exploiting
prelexical properties including stress (Jusczyk et al, 1999b) and segmental phonotactics (Mattys
& Jusczyk, 2001). These facts suggest that word segmentation, or at least infant word
segmentation, is a logically distinct problem from word learning. More broadly, these findings
support a two-stage theory of speech processing which involve distinct sublexical and lexical
representations, a distinction which is supported in current theories (Pierrehumbert, 2001 ;
Vitevitch & Luce, 1998) on the basis of dissociations between sublexical phonotactic likelihood
and lexical neighborhood density on measures such as object naming, word recall, nonword
repetition, lexical access, and word learning (Frisch, Large, & Pisoni, 2000; Luce & Large, 2001;
Luce & Pisoni, 1998; Storkel et al, 2006; Thorn & Frankish, 2005; Vitevitch, 1997; Vitevitch,

2002a; Vitevitch, 2002b; Vitevitch et al, 2004; Vitevitch & Luce, 1998, Vitevitch & Luce, 1999).
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Proposal

On the basis of these facts, this dissertation investigates the proposal that infants'
segmentation of speech arises in a prelexical parser (cf. Pierrehumbert, 2001; Hay, 2003). More
specifically, it tests the proposal that infants recover word boundaries based on the identity of the
surrounding diphone, hence the name DiBS — Diphone-Based Segmentation. The use of
diphones — sequences of two speech sounds such as [ba] and [pd] — is motivated by two facts.
First, as reviewed in Chapter 1, there is clear psycholinguistic evidence that infants do attend to
diphones (Mattys et al., 1999) and exploit them for word segmentation (Mattys & Jusczyk, 2001).
Second, Hockema (2006) shows that diphones in English exhibit a bimodal distribution, whereby
the majority of diphones occur almost exclusively word-internally, or almost exclusively across
word boundaries. The clear implication of this result is that an infant could achieve relatively
good segmentation simply by exploiting this cue, as already suggested by the results of Cairns et
al (1997). Thus, DiBS is in clear contrast with earlier work on word segmentation.

One of the earliest proposals comes from Saffran and colleagues (Saffran et al, 1996;
Aslin et al, 1998), who proposed that infants posit word boundaries at points of low transitional
probability (taking the syllable to be the relevant domain for calculations). The transitional
probability measure (and other proposals based on phonotactic coherence, such as Swingley
(2005)'s pointwise mutual information) are appealing from a learnability perspective, because
they only require that the infant be able to track local relationships between speech units.
However, I show in Chapter 4 that when coherence-based proposals of this type are implemented,

the resulting segmentation is inconsistent, and generally of low accuracy. As discussed in more
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detail there, DiBS is generally similar to these coherence-based models, in that it too makes use
of diphones; the primary difference is that DiBS explicitly models word boundaries and
phonotactic context.

Another class of proposals for word segmentation comes from work on connectionist
models. For example, Aslin et al (1996) trained a connectionist network to predict the next speech
element in its input, including a special end symbol for the end of a phrase. They found that the
end symbol was in general strongly activated at word boundaries, and less so word-internally,
implying that the model had learned something about the statistical signature of word endings
from observing the distribution of speech sounds at utterance endings. This research represents a
major step forward in our understanding of infant word segmentation, because it indicates that
distributional information at utterance boundaries is useful for discovering word boundaries.
Unfortunately, an intrinsic property of learning connectionist models of this type is that their
internal representations are opaque (see Chapter 1); that is, it is not clear what kind of
distributional information the model made use of. This is part of the reason that more
contemporary proposals make use of more explicit grammatical models.

For example, Goldwater's (2006) formulates word segmentation and word-learning as a
joint optimization problem. She defines a prior distribution over wordforms (the generator) and a
prior distribution over word frequency distributions (the adaptor); then a search procedure
identifies the segmentation that maximizes the joint probability of these two distributions. This
model makes crucial use of the 1-1 correspondence between the occurrence of a word and word

boundaries. Thus, Goldwater's (2006) model differs from DiBS crucially in conflating the word
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segmentation and word learning problems: under her model, infant word segmentation can only
be explained through word-learning, rather than segmenting based on prelexical cues such as
stress and phonotactics.

The most similar proposals to DiBS in the literature are Xanthos (2004) and Fleck (2008),
which are to some extent incremental models that identify word boundaries on the basis of
phonotactics. These models differ from DiBS chiefly in the cognitive assumptions that they
make. For example, based on considerable psycholinguistic evidence (Saffran et al, 1996; Mattys
et al., 1999; Mattys & Jusczyk, 2001), DiBS crucially assumes that infants can track sublexical
sequences of length 2. In contrast, Fleck (2008) assumes that infants track sublexical statistics of
length up to 5, an assumption which is unsupported by infant research to my knowledge. These
models also differ from DiBS in terms of the larger processing framework assumed; specifically,

they do not distinguish prelexical and lexical representations.

Baseline model
Chapter 2 developed baseline-DiBS, a supervised learning model in which the statistically
optimal diphone statistics p(# | Xy) are given by training the model on the same corpus it is tested
on. Then, a phonetic transcription of the British National Corpus (BNC) was created using the
CELEX pronouncing dictionary (Baayen et al, 1995). Corpus Experiment I replicated and
extended the findings of Cairns et al (1997) by running baseline-DiBS on a phonetic corpus
derived from a large (~100 MW) written corpus. The results showed very high accuracy (~92%)

with a moderate hit rate (~75%) and an extremely low false positive rate (<5%), i.e. a pattern of
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undersegmentation.

In a follow-up experiment, baseline-DiBS was tested on the Buckeye corpus (Pitt et al,
2007). The Buckeye is of special interest because it includes a phonetic transcription of
naturalistic conversation representing natural pronunciation variation, in addition to a canonical
transcription (with the canonical pronunciation for each word). Baseline-DiBS was run on each
of these versions of the Buckeye corpus to determine the differences in predictions that arise
owing to the use of a canonical transcription (in all other experiments). The results showed that
although baseline-DiBS exhibited a considerable degradation in segmentation performance on
the 'conversational' version, the extent and severity of degradation were considerably less than for
other current-generation models of segmentation, Goldwater (2006) and Fleck (2008). Baseline-
DiBS appeared to outperform these more complex models on the 'conversational' corpus owing
to two factors. First, DiBS is a prelexical theory of segmentation and so does not explicitly model
individual lexical items, whereas both Fleck (2008) and Goldwater (2006) achieve segmentation
in whole or in part by recognizing words; the massive variability in word pronunciations in the
'conversational' corpus cannot be represented in these models, so they are forced to model each
variant as a separate wordform. Second, DiBS only segments based only on phonotactic cues at
word boundaries, and these cues appear to be the ones that are comparatively resistant to
conversational reduction processes. I will return to these points in the open issues section later, so

will turn to the next point for now.

Cross-linguistic applicability
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As reviewed in Chapter 1, most word segmentation research, both psycholinguistic and
computational, has focused on English. Thus, cross-linguistic research on this topic is
intrinsically worthwhile in contributing to breadth in the field. More importantly for the
theoretical issues at hand, word segmentation is a problem faced by infants learning every
language. Thus, one of the most important tests for a theory of word segmentation acquisition is
that it work for different languages. Chapter 2 addresses this issue by testing baseline-DiBS on
Russian.

More specifically, a phonetic transcription of the Russian National Corpus (RNC) was
created using Zalizniak's (1977) morphological dictionary and hand-crafted rules based on the
grammar described in Avanesov (1967) and Hamilton (1980). Baseline-DiBS was tested on this
corpus, with results strikingly similar to the English results from the BNC: overall accuracy of
~92%, and a characteristic pattern of undersegmentation, although the hit rate was substantially
lower (~45%) owing to the generally greater length of words in Russian than in English and the
existence of prepositions such as po which are also frequent prefixes. These results suggest that
DiBS has at least some degree of cross-linguistic applicability.

It is entirely possible that the great similarity in segmentation performance between
English and Russian owes to specific linguistic similarities between these two languages, or in
other words, that these results might not generalize to all languages. With respect to word
segmentation, two of the most aspects of Russian are its complex phonotactics and its
morphology. As discussed in Chapter 2, Russian and English are alike in having generally

complex phonotactics, e.g. allowing complex consonant clusters; however they differ in where
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these complex clusters may occur. For example, Russian allows extremely complex onsets (e.g.
vstretit'c'a 'meet up') but is more restrictive in codas; English allows complex onset (e.g. strict)
but is especially permissive in codas (e.g. sixths). As discussed in Chapter 2 Russian and English
are alike in having generally concatenative morphology, but they differ in the extent and richness
of their morphology; for example Russian nouns have three different declension classes with 6
cases and 2 numbers (Davidson et al., 1997; Martin & Zaitsev, 2001). In sum, while Russian and
English differ in many particulars, in terms of word segmentation they share a number of
important similarities. Thus, these results are encouraging in that they show that the good
segmentation of DiBS is not specific to English, but further cross-linguistic research is needed to

determine whether DiBS is truly cross-linguistically applicable, or if it only succeeds on

languages with rich phonotactics.

Learnability

The baseline-DiBS model is supervised, meaning that it is given access to the word
boundaries in its training data. This is a reasonable assumption for fluent-listening adults, who
after all correctly understand most of the words they hear. However, finding these word
boundaries is precisely the problem that infants are trying to solve. Baseline-DiBS is therefore
unsuitable as a model of infant word segmentation. Rather, the results of Chapters 2 and 3 serve
as a proof-of-concept, illustrating that DiBS is at least a tenable theory. For DiBS to truly explain
the acquisition of word segmentation, however, there must be a learnability story, by which

infants can estimate good DiBS statistics even if they cannot obtain the statistic optimum. In fact,
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part of the motivation for DiBS is precisely this learnability issue — owing to the small diphone
domain, the number of parameters in a DiBS model is small, implying that the parameter should
not require too much data to estimate, provided a reasonable estimation procedure can be found.

Chapter 4 develops exactly such a learning procedure. The first step is to rewrite the

fundamental DiBS statistic p(# | xy) using Bayes' Rule:

p(# I xy) = p(xy | #)p(#)/p(xy) (6.1)

Assuming that the value p(#) and the distribution p(xy) are available to the infant, as reviewed in
Chapter 1 or argued in Chapter 4, the infant is in a position to estimate p(# | xy) if they can
estimate p(xy | #). The next step is to assume phonological independence across a word

boundary:

p(xy I #) = p(x < #)p(# —y) (6.2)

where the terms p(x < #) and p(# — y) represent the distribution of speech sounds word-finally
and -initially, respectively. In lexical-DiBS these distributions are estimated from the learner's
lexicon and in phrasal-DiBS they are estimated using from the distribution of speech sounds at
utterance edges, a formally precise interpretation Aslin et al's (1996) insight that utterance-edge
information is useful for word segmentation.

In Corpus Experiment III, these learning theories are tested; the results show that with a
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full lexicon lexical-DiBS achieve performance nearly identical to baseline-DiBS, whereas
phrasal-DiBS is slightly inferior but still generally comparable. The lexical-DiBS result in
particular is both reassuring and surprising; reassuring as it offers a real validation of the
learning theory, but surprising because the estimation mechanism is so different from baseline-
DiBS and yet the results are almost identical. Crucially, both learning models exhibit
undersegmentation, with the implication that if human infants do segment using a DiBS-like
mechanism, then their prelexical parser should exhibit undersegmentation throughout the
lifespan.

As reviewed in Chapter 1, the predictions of certain other prelexical proposals of word
segmentation are not very clear, as they have not been satisfactorily modeled, or at least not
modeled in a consistent way comparable with what is done here. Thus, in Corpus Experiment V,
a number of coherence-based models are tested, such as one based on Saffran et al's (1996)
proposal of forward transitional probability. The results show that these coherence-based
measures achieve consistently inferior segmentation to DiBS; not only do they exhibit
over+undersegmentation, but the overall level of accuracy is much lower. Thus, these models are
not consistent with an efficiently designed processing system; rather, they predict that the lexical
access system must repair both kinds of prelexical parsing errors.

Given these results, DiBS appears to be a better theory of prelexical word segmentation.
However, Corpus Experiment IV tested lexical-DiBS in the best case, when it is equipped with a
full lexicon. In infant acquisition, the parsing statistics should be gradually refined as the infant

learns more and more words, but crucially, starting from a small lexical inventory. Thus, Corpus
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Experiment VI investigated the effect of vocabulary size on lexical-DiBS parsing by randomly
generating 100 lexicons for a range of vocabulary sizes. The results showed a steadily increasing
level of segmentation which was better than chance even for very small vocabularies, and close to
ceiling for vocabularies of 1000 words. Thus Chapter 4 provides a full learnability account for

DiBS and illustrates that it achieves near-ceiling performance without requiring too much data.

Error patterns

The importance of the two-stage framework becomes clear when considering the error
patterns exhibited by the prelexical segmentation mechanism. This is because the lexical access
mechanism must 'catch' any errors made by the prelexical parser. As discussed at length in
Chapter 1, there are two types of errors: the parser misses a word boundary when there was one
(miss), or it falsely identifies a word boundary when there wasn't (false alarm). Thus, there are
three possible error patterns: undersegmentation, in which the parser misses often but almost
never false alarms; oversegmentation, in which the parser false alarms often, but almost never
misses; and over+undersegmentation, in which the parser exhibits a substantial rate of both
misses and false alarms. Which error pattern the prelexical parser exhibits therefore defines the
nature of the input to the lexical access mechanism.

One of the most important findings of this dissertation is that all DiBS models
undersegment. There are two significant implications of this fact. First, this implies that the
lexical access mechanism need only ever cope with an undersegmentation error pattern in its

input (if this prediction of DiBS is in accord with the true human facts). This is an efficient
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design, as the prelexical parser correctly filters one error type, and the lexical access mechanism
need only handle the other. Second, DiBS predicts that in the early stages of lexical acquisition,
infants will learn undersegmented words. Anecdotally, this appears to be the correct behavior,
although I am not aware of published studies which unambiguously indicate that children
undersegment more than they oversegment. From a dynamics perspective, this is also a desirable
behavior, as it is guaranteed to avoid an 'error snowball'.

An error snowball is the theoretically undesirable situation in which an initial
segmentation error results in learning of an improper word, which then causes further mis-
segmentation, which cause further improper word-learning, and so on. Of course, this does not
happen in actual child language acquisition; the question is why not; and this is where DiBS
model offers some insight. Given the fact that DiBS undersegments, there is a clear prediction
that if a word learning error occurs, the improper word will consist of multiple words (e.g.
thehorse). In terms of lexical-DiBS specifically, there is but a single effect of learning this
improper word: it increases the 'boundary-hood' of the onset 74 and the offset s. This is not a bad
outcome, as these really are word-boundary segments. More generally, when the model
improperly learns a multi-word sequence as a word, the boundaries of that improper word are still
legitimate word boundaries. Thus, there is no significant adverse effect on the boundary statistics
estimated by lexical-DiBS. The only way to adversely affect the boundary statistics of lexical-
DiBS would be to oversegment, which would incorrectly lead the model to treat word-internal
diphones as boundary cues. The fact that DiBS undersegments is what prevents this from

happening. Viewed from this perspective, undersegmentation is a conservative strategy that
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prevents the learner from entering an error snowball.

Lexical access

In chapter 5, a theory of lexical access was developed in the context of the two-stage
speech processing framework. The lexical access mechanism and the prelexical parser are
designed to work together, with the prelexical parser identifying some word boundaries with high
reliability; the lexical access mechanism then further decomposes the output of the prelexical
parser by matching it against stored wordforms in the lexicon. More specifically, the lexical
access mechanism identifies a range of possible decompositions and assigns a probability
distribution to them using a unigram probability model. In case a decomposition includes an

unmatchable word, a probability is assigned as the product of the prior probability of

encountering a new word (p,) and the lexical phonotactic likelihood that a novel word will have

the target form. Both cases are illustrated in Equation 6.3 below:

input: thebike
decomposition 1: p(the+bike) = p(the) - p(bike) = f(the)/F - f(bike)/F

decomposition 2: p(thebike) = p, - p(w, = [Dib2k]) = n,,./F- (1-p,) - p,- 1®I"  (6.3)

where F is the expected frequency mass of the lexicon (including reserved mass for unseen

items), n,,,,, is the number of hapax types (types which occur with a frequency of 1), p, is the

prior probability of a word boundary, and |9l is the number of phones in the language (see
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Chapter 5 for details).

Corpus Experiment VII assessed the utility of this theory of lexical access by examining
its effect on segmentation. Input from the BNC was divided into samples representing roughly
one days' worth of input (~30,000 wds, 4000 phrases, see Appendix 2B). A subset of these
samples were selected for assessment, representing testing at one month intervals during the
second six months of life. The model was equipped with the full lexicon of forms that occur in
the BNC; hard parses from the prelexical parser served as the input to the lexical access system.
The results showed that the lexical access system increased the hit rate to near-ceiling without
substantially increasing the false-alarm rate. In other words, the prelexical parser and lexical
access mechanism proposed here do indeed function together to achieve near-ceiling
segmentation. This outcome did not depend strongly on the quality of the prelexical parser — as
long as it did not oversegment, the lexical access mechanism exhibited excellent decomposition.

However, this outcome was predicated on the learner having access to the 'correct’
lexicon, in which morphologically complex words are represented as single words for the
purposes of statistical estimation and wordform matching. In order for infants to achieve this kind
of performance, they must be able to learn exactly this kind of word — so a theory of word-

learning theory must be developed.

Toward word-learning
As reviewed in Chapter 5, comparatively little is known about which wordforms infants

learn and why. A variety of cognitive factors such as verbal working memory and expressive
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vocabulary are implicated in vocabulary development (e.g. Masoura & Gathercole, 2005); more
specifically linguistic factors such as the phrasal position in which a word occurs (Tardif,
Gelman, & Xu, 1999), conformance to the dominant stress pattern of the language (Swingley,
2005), and phonotactics and lexical neighborhood density (Storkel et al, 2006) also appear to
matter. It is safe to say that there is no generally accepted theory of word-learning that predicts
under what circumstances a wordform will be learned.

In the present case, exactly such a predictive theory is needed. That is because the
ultimate goal of this dissertation is to gain insight by modeling the interlocking problems infants
face in word segmentation, word recognition, and word learning. The ideal theory would specify
under what circumstances infants learn wordforms, and allow for a close fit with observed
developmental facts, such as the trajectory of infants' lexicon sizes. However, this is an area of
very active research, and the basic facts are not fully known, though it is clear that word-learning
is a complex behavior.

As a first, crude pass at this problem, I proposed that infants learn words based on the
frequency with which they have segmented them out from their input. More specifically, |
proposed that infants track lexical 'candidates' in their input. Every time the lexical access
mechanism selects a winning decomposition that includes unmatched input (a novel word, i.e.
lexical access failure), the unmatched form becomes a lexical candidate, or if it has already
become a lexical candidate, its frequency is incremented. Once a candidate has been accessed 10
times, it is 'learned’, i.e. transferred from the list of candidates and entered into the lexicon

proper.
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While crude, this learning theory models several important properties of word-learning.
First, it models the property that words which occur more frequently are more likely to be learned
(Storkel et al, 2006). Second, it models the property that words with better junctural phonotactics
are more likely to be learned (Mattys & Jusczyk, 2001), a property which falls out naturally from
DiBS parsing. Third, it models the property that shorter words are easier to learn, owing to the
generally higher lexical phonotactic probability assigned to shorter words.

Of course, this model of word-learning is insufficient in a number of ways. For example,
it does not take into account any of the social factors in word-learning (Baldwin, 1995; Baldwin
et al, 1996), except in the indirect sense that socially important items and events will tend to be
more frequent. Also, this model does not take into account lexical factors such as phonological
similarity to known words, which appear to play an inhibitory role in word-learning during
infancy (Swingley & Aslin, 2000; Stager & Werker, 1997) but a facilitatory role in more
proficient word learners (e.g., Masoura & Gathercole, 2005).

A full bootstrapping model was created and tested in Corpus Experiment VIII. For a
prelexical parser, this model used mixture-DiBS, a linear mixture of phrasal-DiBS and lexical-
DiBS in which the weighting of lexical-DiBS grew as the model learned more and more words.
The lexical access system included the theories of lexical access and word learning developed in
Chapter 5. The results were similar to those of Experiment VII in that the combined system
achieved a near-ceiling hit rate. However, they were unlike Experiment VII in that the combined
system failed to achieve a near-floor false positive rate; in other words, the combined system

exhibited aggressive oversegmentation.
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Inspection of the acquired lexicon revealed that this was in part owing to a number of
single-consonant 'words' such as [t], [d], [s], [z], [V], [n], [k], and [1]. Since many of these are
indeed meaningful sublexical units of English (plural/possessive allomorphs: [t]/[d], [s]/[z];
pronominal clitics: [v]/I've, [1]/I'll), it is not necessarily a problem that the system acquired these
units. However, the lexical access system was not designed to model morphological relationship
between such sublexical units. Thus, once [s] was learned as a 'word', there was no constraint
which forced it to be recognized only word-finally. As confirmed by mathematical analysis in the
general discussion of Chapter 5, the result was that such single-segment 'words' were indeed
segmented off word-initially. This further entrenched the single-segment words and led to more
of them.

A final experiment was conducted to determine whether this issue could be addressed
with word-learning constraints. Specifically, Corpus Experiment IX was exactly like the previous
experiment, except with one additional constraint: a lexical candidate must contain a vowel to be
added to the lexicon. The results showed that this simple constraint remarkably improved the
ultimate performance of the bootstrapping model, both in terms of reducing its aggressive
oversegmentation, and in terms of the lexicon that was acquired. Note that this experiment is not
intended to involve the cognitive claim that infants actually make use of exactly this constraint;
nor is it designed to achieve the best possible lexicon. Rather, it was intended to gain insight on
what properties of the system were causing the failure in Experiment VIII.

Thus, taken together, the results of this dissertation suggest that a relatively naive

statistical approach (DiBS) is able to achieve quite high performance on prelexical word
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segmentation (Chapters 2-4), but that a naive statistical approach fails when it comes to word-
learning (Chapter 5). Instead, a richer representational apparatus is needed for lexical access and
word-learning. Some specific issues associated with these points are discussed in more detail in

the following sections.

Outstanding issues and future directions

Lack of prosody

To my mind, one of the most surprising aspects of this work is the relatively high degree
of segmentation that can be achieved without seriously grappling with issues of prosodic
representation. The only levels of prosodic representation in this dissertation are the phone, the
word, and the phrase, in the sense that the model is given phrases (sequences of phones) as its
input and must partition them into words. The corpora used in this dissertation do not have an
explicit representation of stress; stress is only represented indirectly through its segmental
reflexes (e.g. absence of vowel reduction). Intonation and prominence relations are also not
expressed — there is no representation of focus, information structure, relative prominence of
different stressed syllables. In fact, even function words such as the are realized with a canonical
(stressed) pronunciation in every experiment except Corpus Experiment III with the Buckeye
corpus. There is no representation of syllable or foot or mora or any other intermediate level of
representation from the prosodic hierarchy (Selkirk, 1984; Nespor & Vogel, 1986). It is highly
surprising to me that such a high level of segmentation can be achieved without reference to

these levels of representation, because there are many reasons to think that each of them can be
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informative for word segmentation, as discussed below.

Absence of stress. Stress is a highly informative cue for word segmentation in English. As
noted in Chapter 3, English exhibits grammatically-conditioned regularities in stress which may
be useful for word segmentation. For example, Cutler & Carter (1987) found that over 90% of
content word tokens began with a stressed syllable in a large corpus of spontaneous British
English speech. Thus, as long as infants can distinguish the onsets of stressed syllables, and these
onsets are aligned with word onsets (cf. Swingley, 2005), infants should be able to achieve a high
degree of success in word segmentation by positing word boundaries before stressed syllables.
Indeed, as reviewed in Chapter 1, this is precisely what English-learning 7.5-month-olds appear
to do (Jusczyk, Houston, & Newsome, 1999). There are certain issues that arise with respect to
stress, however.

First, syllabification is not transparently available in the signal, as listeners from different
language backgrounds syllabify the same signal in different ways (Dupoux et al, 1999). This fact
implies that syllabification too must be learned.

Second, it is not clear that syllable onsets are always aligned with word onsets. In fact,
Swingley (2005) convincingly demonstrates the importance of re-syllabification phenomena for
word segmentation.*” He showed this by altering the syllabification according to a prelexical

segmentation algorithm for varying percentages of the syllable boundaries, finding that his word-

42 Re-syllabification describes cases in which morphological structure does not align with syllable structure; this
kind of misalignment is especially likely when a morphological unit with a final consonant precedes another
morphological unit which begins with a vowel. For example, in Russian the nominative singular form of 'city' is
‘go.rod where the stem-final /d/ is syllabified into a coda; in the nominative plural go.ro. da the same /d/ is
syllabified into the onset. Similarly in my own speech the sequence can't a is sometimes realized [k&.n9], i.e. the
nasal is morphologically associated to the first vowel but syllabified with the second vowel.
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finding algorithm (see Chapter 1 for details) was not robust against this variation. At present it is
unclear to what extent re-syllabification actually occurs in spontaneous speech (for discussion see
Swingley, 2005); but given that it occurs at all it is potentially a serious issue for syllable-based
theories of word segmentation.

A final issue that arises with stress is that the accent system varies cross-linguistically.
For example, French is reported to have phrase-final accenting (Rossi, 1980; Vaissiere, 1991) .
This accenting is not lexically contrastive, so that 'stress' in French is purely demarcative rather
than distinguishing words as it does in English (‘re.cord vs. re. cord). On the one hand, this
suggests that stress is an even better cue for word segmentation in French than in English. On the
other hand, this cross-linguistic variation means that the learner must first discover the stress
system of their language before they can make use of it for word segmentation. How infants
actually do this is an active area of research (e.g. Dupoux, Sebastian-Galles, Navarette, &
Peperkamp, 2008; Skoruppa et al, in press); in fact, this is part of why I neglected stress in the
phonetic transcriptions of the corpora. It is my hope that a DiBS-like account can be applied to

stress learning, but developing such an account lies outside the scope of this dissertation.

Absence of intonation. Like stress, intonation is not represented in the phonetic
transcriptions used in this dissertation. Intonation is largely a sentential property in both English
(Pierrehumbert, 1980) and Russian (Davidson et al., 1997; Martin & Zaitsev, 2001), meaning that
intonational contours are not associated with individual content words but with entire

phonological phrases. As such, intonation is not likely to be as useful for word segmentation in
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these languages as other aspects of linguistic structure that are more clearly associated with
individual lexemes, such as stress. However, there are other languages in which the intonational
structure is lexically-driven. For example, Japanese possesses lexically contrastive intonational
patterns (Pierrehumbert & Beckman, 1988), so intonational structure is likely to be a more useful
cue for word segmentation in Japanese. One of the formally attractive properties of DiBS is that
it can easily be extended to model exactly such structure. The basic equations remain largely the
same; only the prosodic domain and nature of the units change.

The Boston Radio News Corpus (Ostendorf, Price, & Shattuck-Hufnagel, 1995) is an
corpus of radio broadcasts annotated according to the ToBI prosodic standard (Silverman et al,
1992). This corpus crucially differs from the British and Russian National Corpora used
throughout this dissertation in that it explicitly marks prosodic organization (with break indices)
and intonation. The DiBS theory of word segmentation and in particular the learning theories
described here can be modified to include intonational and prosodic structure. Thus, the Boston
Radio News Corpus is an invaluable source of data for pursuing this line of research, which I

must leave to the future.

Absence of syllable structure. As remarked above in the discussion of Swingley (2005),
syllabification and word segmentation are related, and both must be learned; the relationship is
not simple, however. For example, it is not the case that every word boundary is truly aligned
with a syllable boundary, as re-syllabification may induce morphological-prosodic

misalignments. It is likely that word segmentation and syllabification can be learned jointly
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(Johnson, 2008), but further research is needed to determine under how often and under what
circumstances re-syllabification actually occurs and what kind of problem it presents for word
segmentation.

Certainly some oversegmentation errors could be prevented by modeling syllable
structure. For example, as noted in Chapter 5, sequences such as with several being parsed as wi
thseveral. The sequence ths is parsed as word-internal because it occurs so frequently in fractions
(e.g. fourths, fifths) and a few other words such as depths. Of course, the problem is that this
sequence is only licit in English codas, not in English onsets. A richer prosodic structure that

learned such syllabic constraints would avoid this kind of error.

Absence of other levels of prosodic hierarchy. Beyond syllable structure specifically, this
dissertation has neglected other levels of the prosodic hierarchy, in particular the foot and
prosodic word. In fact, as noted in Chapter 5, inspection of the output of the prelexical parser
suggests that in many cases it identifies prosodic words or closely corresponding units, consisting
of a content word and possibly one or two function words such as determiners or prepositions.
These can be regarded as initially promising results.

Indeed, just as word boundaries can be identified by modeling their statistical signature,
other levels of prosodic representation may be modeled as well. As remarked above with
reference to stress, DiBS was designed to be extensible to other levels of representation. Joint
optimization of word boundaries and other levels of prosodic structure is not only possible

theoretically, but likely to result in better modeling at each level individually (Johnson, 2008). It
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is for this reason that I left other levels of prosodic representation to future research.

However, this research has suggested one place in which a richer prosodic representation
would be especially helpful — in learning new words. As discussed in Chapter 5, the word-
learning mechanism and lexical access mechanism proposed in this dissertation are under-
constrained. The lexical access mechanism does not represent dependencies between sublexical
units, so that if it is set to search for such units (e.g. the plural allomorph [s]) it is currently
unable to distinguish their occurrence in morphologically appropriate position from their
occurrence elsewhere, resulting in an error avalanche as in Experiment VIII. One type of
constraint that is likely to address this problem is a constraint on word learning (Pierrehumbert,
p.c.) — novel words can only be admitted to the lexicon if they can be realized as full prosodic
words, 1.e. according to some minimal word constraint (McCarthy & Prince, 1986/1996). At
present, this level of representation is lacking, and indeed, just as with syllabification, there are
important learnability issues that must be addressed. Prosody is both an outstanding issue and a

promising future direction for this research.

Absence of morphological structure. As noted in Chapter 5, the theories of lexical access
and word-learning here do not represent complex morphological structure. For example, head-
affix dependencies are not represented, so if the system learns (the plural) [s], this 'word' then
becomes available to be segmented off from the beginning of words. Segmenting [s] from this
morphologically inappropriate position leads to an error snowball in which other single-

consonant 'words' are learned and become entrenched. To prevent this from happening, the
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lexicon and lexical access system must be enriched to represent/assign morphological structure.
Presumably the nature and types of words that can be learned can then be more appropriately

constrained.

Mixture-DiBS
One issue with mixture-DiBS (the incremental version of DiBS used in the bootstrapping
experiments, Experiment VIII and IX) concerns the mixture weights. Recall that mixture-DiBS is

simply a linear mixture of phrasal-DiBS and lexical-DiBS:

Puiare(# 1 XY) = (W1 P (# 1 XY) + Wiiea* Preia# 1 XY, + i)

w,... = humber of input phrases W,y = 2wen f(W) (6.4)
As shown in Experiments VII, phrasal-DiBS achieves its near-ceiling segmentation with a
minimum of training data, i.e. by or before the model has accumulated six 'months' of language
exposure. Moreover, as shown by Experiments IV and VI, lexical-DiBS achieves superior
performance to phrasal-DiBS with vocabularies of even a few hundred words. Thus, it makes
sense to choose a weighting scheme which does not continue to 'reward' phrasal-DiBS after it
reaches ceiling. but which does continue to reward lexical-DiBS as it continues to yield better
segmentation.

The weighting scheme described in Equation 6.4 (which was used in Experiments VIII

and IX) does continue to add weight to phrasal-DiBS as the model's language exposure increases.
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In fact, it increases linearly with the model's language exposure as measured in number of input
phrases. The intention behind this weighting scheme was that the phrasal-DiBS component be
heavily weighted initially, but gradually yield to lexical-DiBS as a richer and richer lexicon was
acquired. Specifically, since the average phrase contains about 7.5 words, the lexical-DiBS
weighting should eventually be weighted almost 7.5 times as heavily as phrasal-DiBS, once the
learner reaches a steady-state in which they recognize most of the words they hear.

The level of prelexical segmentation attained by the prelexical parsers in Experiments
VIII and IX involves a hit rate of about 55%, which is approximately the ceiling level of
performance achieved by phrasal-DiBS in Experiment IV, but below the maximum hit rate of
65% attained by lexical-DiBS in Experiment VI (which investigated segmentation as a function
of vocabulary size). Thus, the maximum level of prelexical segmentation achieved in the
bootstrapping experiments (VIII and IX) is driven by the phrasal-DiBS component, even though
the lexical-DiBS component should be able to yield better segmentation by this vocabulary level.
This suggests that the weighting scheme weights the phrasal-DiBS component too heavily
relative to lexical-DiBS.

One way to address this would be to stop increasing the weighting of phrasal-DiBS once
it has reached its maximum. For example, the weighting of the phrasal-DiBS component could be
frozen at the value it takes at 6 'months' of language exposure, as phrasal-DiBS has evidently
reached its near-ceiling level of segmentation already with this amount of language exposure. In

contrast, the weighting of lexical-DiBS should continue to increase as more words are learned.
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Pronunciation Variation

One of the most interesting results in this dissertation comes from Experiment II, in
which baseline-DiBS was tested on the Buckeye corpus (Pitt et al, 2007) of conversational
speech. Specifically, the segmentation performance on a canonical transcription of the corpus
was compared to the segmentation performance on a more phonetically precise transcription
representing a number of conversational reduction processes. The performance of baseline-DiBS
was also compared against the current-generation gold-standard models of Goldwater (2006) and
Fleck (2008). The most interesting result of this comparison was that although all three models
exhibited degraded performance on the 'conversational' transcription, DiBS exhibited
significantly /ess degradation than the other two models.

As discussed in Chapter 2, this effect is driven by two facts. First, conversational
production processes give rise to multiple pronunciation variants. Second, the kind of
pronunciation variation that occurs appears to selectively target word-internal sequences; in other
words, the junctural phonotactic cues that signal word boundaries are relatively well-preserved by
conversational reduction processes. In Goldwater's (2006) and Fleck's (2008) models the first fact
can only be handled by positing each distinct variant as a separate word type, which for different
model-internal reasons leads to a degradation in performance in each case. In contrast, DiBS is
an entirely prelexical theory of word segmentation, so the distinction between distinct word types
and pronunciation variants of the same type is essentially irrelevant. The second fact explains
why DiBS is not as adversely affected by conversational reduction as the other two models — in

fact, conversational reduction processes appear to selectively preserve exactly the cues which are
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the most important for DiBS segmentation.

Pronunciation variation is a serious issue in a variety of speech domains. The above
discussion illustrates why it is a problem for word segmentation. However, the same problem
occurs in automatic speech recognition contexts (Jurafsky & Martin, 2008). In this context, there
are two general types of solutions. The first is to store some canonical representation of a
wordform, and use a generative model the kinds of variation that are likely to occur, e.g. with a
string-distance algorithm. The second type of solution is to explicitly list all the pronunciation
variants of a word. In either case, open-vocabulary scenarios in which the system is likely to
encounter unknown words are a problem. Seen in this light, the results of Experiment II are quite
promising, as they suggest that novel words' boundaries may be detected on the basis of
prelexical phonotactics even when the novel words themselves cannot be recognized. That is,
although DiBS is ultimately intended as a cognitive model of the acquisition of word
segmentation, it may prove of use in speech technology applications. For example, it may help to

identify unknown words in open-vocabulary contexts.

Toward word learning

According to the two-stage speech processing framework adopted in Chapter 1, word
recognition is mediated by a prelexical phonological parser, which assigns a preliminary
phonological parse to speech input. This parse is then used to facilitate downstream processing
by initiating lexical access attempts at locations in the speech stream which are likely to

correspond to word boundaries. Together, these two subsystems present an efficiently designed
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system, in which the prelexical parser reliably identifies some word boundaries using
phonological generalizations, and the lexical access system recovers the remaining boundaries
through recognition of specfic lexical items. Chapters 2-4 developed the baseline and learning
theories for DiBS, a diphone-based theory of prelexical word segmentation. Chapter 5 then
concentrated on theories of lexical access and word-learning, the remaining components needed
for a complete incremental/bootstrapping theory of word segmentation, word recognition, and
word learning.

The results of Chapter 5's experiments suggest the naive statistical approach taken here is
not sufficient to support such a complete account. More specifically, while a naive statistical
approach appears to suffice for prelexical/phonological parsing, a richer model of morphological
structure is needed than the one adopted in Chapter 5. Experiment VII showed that when the
bootstrapping system is equipped with the 'correct' lexicon to begin with, the combination of
prelexical parser and lexical access mechanism can achieve near-ceiling segmentation. However,
the bootstrapping experiments (VIII and IX) showed that in the absence of more specific
constraints, the word-learning mechanism would not acquire the 'correct’ lexicon.

Rather, the naive word-learning theory proposed here acquired a number of affixes which
cannot occur on their own. For example, it acquired the affixes re- and de-, whose status in infant
comprehension is unknown to my knowledge. Under the unigram theory of lexical access
adopted in Chapter 5, the true dependencies between such affixes and their morphosyntactic
heads cannot be represented. Thus, either the lexical access mechanism must be enriched to

model these dependencies, or the word-learning mechanism must be further constrained to
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distinguish these sublexical units from full words. In light of these findings, a richer model of the
lexicon is called for, e.g. as a network of sublexical units (Bybee, 1995; Baayen, 2003). Instead,
or possibly in addition, a richer prosodic representation may be called for, e.g. constraining the
word-learning mechanism to learn only words which can be realized as full prosodic words.

Additionally, in order to instantiate this word-learning model I was forced to make a
number of ad hoc decisions, such as an arbitrary frequency threshold of 10 after which a lexical
candidate was admitted to the lexicon. To my mind, these facts highlight crucial gaps in our
knowledge of infant wordform learning. Existing research has demonstrated that a wide variety of
factors are important for word learning, including the social context, (e.g., Baldwin, 1995),
cognitive properties of the learner (e.g., Masoura & Gathercole, 2005), and both sublexical and
lexical properties of the word itself (e.g. Storkel et al, 2006). A growing body of research
demonstrates that by 18 months infants exploit function words for grammatical categorization
(e.g. Mintz, 2003; Peterson-Hicks, 2006). However if the learning theories instantiated in the
bootstrapping experiments (Corpus Experiments VIII and IX) are even coarsely correct, the
results suggest that function items may some of the first words to be segmented and learned, a
possibility which is consistent with existing research on infant perception of function elements
(Shi, Morgan, & Allopenna, 1998; Shi & Werker, 2001; Shi, Werker, & Cutler, 2006; Shi,
Werker, & Morgan, 1999). In spite of this wealth of research on factors that influence word
learning, we have far to go in understanding why infants learn the words they do, and why they

do not learn the words they do not.
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Summary of Contributions

This dissertation has made a number of theoretical contributions to our state of
knowledge.

I regard the most important contribution of this dissertation as the devleopment of a
learning theory for DiBS, whereby word boundaries can be estimated from information that
infants almost certainly can observe and represent. In particular, phrasal-DiBS illustrates how to
estimate word boundary probabilities using the distribution of speech sounds at utterance
boundaries. Lexical-DiBS illustrates how the same word boundary probabilities can be estimated
from word types and frequencies in the infants emerging lexicon. These two learning theories can
be combined in mixture-DiBS, which dynamically weights the two components according to
their reliability. These models define a fully incremental and cognitively plausible model of
prelexical word segmentation.

Another contribution of this dissertation is to replicate and extend earlier findings which
suggest that phonotactic approaches to word segmentation are cross-linguistically applicable
(Batchelder, 2002; Fleck, 2008). Specifically, this dissertation investigated the segmentation
performance of DiBS on English and Russian, and found a generally similar pattern of
undersegmentation with high overall accuracy (92%) (although there was a cross-linguistic
difference in that the overall hit rate was significantly lower in Russian, in part because Russian
words are longer). Russian and English share a number of phonological properties, in particular
their relatively complex phonotactics (see Chapter 3 for discussion); but they differ in

morphological structure, with Russian possessing a much richer inflectional system (see Chapter
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3 for discussion). The high degree of similarity of DiBS' segmentation on these two different
languages is a promising result, as any learning theory must be cross-linguistically applicable if it
is truly part of how humans learn language.

Perhaps most controversially, this dissertation has argued forcefully that word
segmentation and word learning, while conceptually related, are indeed separate problems that
are solved separately by infants. In part this claim is motivated by the review of acquisition
literature in Chapters 1 and 5 suggesting that infants achieve some degree of prelexical word
segmentation in order to start learning more wordforms. In part it is motivated by evidence
supporting a distinction between prelexical and lexical processing in adults (Pierrehumbert, 2001;
Vitevitch & Luce, 1998). I submit that the results of Experiment VII provide additional support
for this claim: Experiment VII showed that the prelexical DiBS parser and lexical access system
may function together to achieve near-ceiling segmentation. The prelexical parser identifies many
word boundaries, filtering all or most false alarms; the lexical access system can efficiently
search the lexicon, secure in the positive word boundary identifications made by the prelexical
parser. In other words, this two-stage processing framework achieves efficient, near-ceiling
performance specifically by separating the problems of word segmentation from word
recognition and word learning.

An interesting result that merits further attention is the study of pronunciation variability
in Chapter 2 (Experiment II). As remarked above, pronunciation variability is an important topic
for both cognitive theories of speech perception and speech technology applications such as

automatic speech recognition (Jurafsky & Martin, 2008). The results of Experiment II suggest
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that phonotactic approaches may hold some promise for speech technology applications, as
conversational reduction processes appears not to target junctural cues as much as word-internal
structure. Without explicit models of pronunciation variation — which can be computationally
costly — lexical models are forced to model pronunciation variants as distinct word types. At the
least these results suggest the need for future research on phonotactic approaches to
pronunciation variability.

Moreover, the results of the bootstrapping experiments (Corpus Experiments VIII and 1X)
highlight crucial gaps in our understanding of wordform learning specifically. Acquisition
research has demonstrated that word learning is a complex behavior which is affected by a
variety of social, cognitive, and linguistic factors (Hall & Waxman, 2004); but despite this
research, fundamental questions about wordform learning remain. In particular, the role of

function items in infant speech processing is in its infancy.
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