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ABSTRACT

Word Identification and Eye Movement Control in Reading as Rational Decision Making

Yunyan Duan

This dissertation provides evidence that reading is best explained as rational gathering of

visual information to identify words efficiently. Although empirical evidence from human

reading research suggests a close link between eye movements and cognitive process, it

is not clear how readers decide when and where to move their eyes as a function of

their cognitive states, and why they make certain eye movement decisions the way they

do. The standard model of word identification assumes that a word requires a fixed

amount of time to identify, which is a function of its word frequency, predictability, and

the distance between the fixation location and the word center. Due to visual acuity

constraints, reading time is minimized at the word center. Since word identification is

considered the main driver of eye movements, dominant models of eye movements in

reading assume that readers always target their eyes toward the word center to obtain

best-quality visual information of the whole word and thus minimize the time needed to

identify the word. In contrast, the rational model of eye movements in reading considers a

word to be identified from a combination of visual and linguistic information, sensitive to
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the interaction of these two sources of information and therefore sensitive to that word’s

particular visual neighborhood structure. As a result, readers move their eyes to the

position that best distinguishes a word from its neighbors to identify the word quickly

and accurately.

Previous modeling studies have shown that a rational model of eye movements in

reading provides natural explanations for several eye movement phenomena, which can

also be explained in dominant models but in less parsimonious ways. In this dissertation,

we present qualitative evidence that the rational model explains eye movement phenom-

ena that cannot be explained by dominant models, and quantitative evidence that the

rational model better predicts eye movement phenomena. Specifically, in Chapter 2 we

demonstrate that human readers seek visual information of the uncertain part of the word

instead of always targeting the word center when they decide where to refixate, which

cannot be explained by dominant models with a standard account of word identification.

In Chapter 3 we demonstrate that the letter position that maximizes word identifica-

tion efficiency varies as a function of the structure of the particular word, which is only

predicted by a rational model. In Chapter 4, we provide quantitative evidence that the

rational model predicts humans’ decision to skip a word better than a model based on the

standard account of word identification. In Chapter 5, we provide quantitative evidence

that predicting readers’ comprehension from eye movements through a rational model is

more robust than through using the features from a dominant model.

Altogether, this dissertation provides evidence that the rational model of eye move-

ments in reading, which captures the complicated interaction between visual and linguistic

information and optimizes eye movement decisions accordingly, is able to better explain
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and predict human eye movements than dominant models of eye movements that take a

standard account of word identification. Therefore, the eye-mind link between eye move-

ments and online language processing is naturally understood as rational eye movement

decision making based on the knowledge from a probabilistic word identification process.
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CHAPTER 1

Introduction

During reading, the visual processing of language, readers are able to identify text

and extract meaning from visual input. An important component of this process is eye

movements, as readers must move their eyes constantly to bring different portions of the

text into a small area of the retina with high visual acuity. In natural reading, readers

make a quick eye movement (called a saccade) to send the eyes to a location, remain

relatively still there for about 200-300 ms to gather visual input around that region (called

a fixation), and launch the next saccade. This process can be captured by the eye-tracking

technique, which records the eyes’ locations in real-time. Psycholinguistic researchers use

eye-tracking to study online human language processing, given that long reading time and

multiple fixations on a word often indicate processing difficulty related to this word.

Ample evidence from empirical studies have found that eye movements are sensitive

to word-level linguistic information, such as word frequency (Schilling, Rayner, & Chum-

bley, 1998; Kliegl, Grabner, Rolfs, & Engbert, 2004; McConkie, Kerr, Reddix, Zola, &

Jacobs, 1989) and contextual predictability (Balota, Pollatsek, & Rayner, 1985; Rayner

& Well, 1996); and visual information, such as word length (McConkie, Kerr, Reddix,

& Zola, 1988; Brysbaert & Vitu, 1998) and preview obtained from preceding fixations

(Inhoff, Eiter, Radach, & Juhasz, 2003; Angele & Rayner, 2013). Researchers there-

fore believe that there is a strong link between real-time language processing and eye

movements (Rayner, 1998; Morrison, 1984; Just & Carpenter, 1980). A standard way of
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modeling word identification in reading is thus assuming that each word is associated with

some ‘word difficulty’, which is a function of word frequency and contextual predictabil-

ity. Readers have to fixate a word for a certain amount of time, which is a function of

both word difficulty as well as the distance between fixation position and the word center.

Readers, therefore, must be in one of two states: they either do not identify the word at

all at any time point before reaching the required amount of time; or they ‘identify’ the

current word completely once they fixate (or, focus their attention on) the word for long

enough. Dominant models of eye movements in reading adopt the standard model of word

identification, and make heuristic eye movement decisions depending on the state. They

estimate the parameters of the reading time function (and many other functions) by fitting

human eye movements data. These computational models can yield eye movement tra-

jectories similar to humans’ (Reichle, Warren, & McConnell, 2009; Engbert, Nuthmann,

Richter, & Kliegl, 2005).

Although this line of modeling work suggests that both visual and linguistic informa-

tion play important roles when making eye movement decisions, it does not explain the

mechanism of eye movements in reading beyond mathematical functions with estimated

parameters. As a result of the fixed function forms and parameters, these models could

only make predictions at a restricted scope, and are not expected to accommodate eye

movement phenomena affected by finer-grained information (e.g. a word’s particular vi-

sual neighborhood structure). To explain how the visual and linguistic information is

processed and why readers move their eyes the way they do, more research is needed

beyond the description of eye movement behaviors.
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In contrast, the rational model of reading provides insights into how eye movements

are generated from processing various information available during reading (Legge, Klitz,

& Tjan, 1997; Legge, Hooven, Klitz, Mansfield, & Tjan, 2002; Bicknell & Levy, 2010,

2012b). The rational model of reading is based on the idea of rational analysis (Anderson,

1990), which tries to explain cognition in terms of an agent’s optimal adaptation to the

environment. The philosophy of this approach is that researchers can understand why

humans behave in certain ways by comparing human behaviors with the optimal behaviors

yielded by an agent, where the agent performs the task with an environment model that

specifies the information available to the agent and the constraints the agent faces. If the

agent’s behaviors are similar to that of humans, then it indicates that humans perform

near-optimally under the given environment. This approach therefore both explains the

motivation of human behaviors, and also specifies the conditions and constraints that

humans face.

Previous rational models of eye movements in reading have shown that several human

eye movement phenomena can be explained from a rational perspective (Legge et al., 1997,

2002; Bicknell & Levy, 2010, 2012b). This dissertation furthers this line of research by

evaluating the rational framework with more eye movement phenomena, especially those

predicted differently by a rational model and eye movement models with the standard

account of word identification. Before presenting the specific questions addressed by the

dissertation, we first summarize the empirical findings of eye movements and existing

rational models of eye movements in reading.
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1.1. Eye movements in reading

To understand how reading works, researchers have developed several paradigms. One

is natural reading, in which participants read a piece of text (usually a sentence) while their

eye movements are recorded. This is similar to reading in our daily life, and is more natural

than other psycholinguistic tasks – for example, self-paced reading, in which participants

read one word/phrase at a time, push a button to move to the next word/phrase, and

cannot go back to the previous text. Natural reading is probably the most commonly used

task in the research of reading. Researchers use natural reading to collect eye movement

data from a large number of participants as they read a long piece of text, and create

eye movement corpora. The most known eye movement corpora include Schiling corpus

(Schilling et al., 1998), Dundee corpus (Kennedy, Hill, & Pynte, 2003; Kennedy & Pynte,

2005), Potsdam Sentence Corpus (Kliegl, Nuthmann, & Engbert, 2006), and GECO (Cop,

Dirix, Drieghe, & Duyck, 2017), among many others.

Eye-tracking is also used to study how an isolated word is identified. In this task,

one word is first presented somewhere in the participant’s visual field and the participant

then moves their eyes freely to identify the word. Compared to natural reading, this task

excludes influence from context, and allows researchers to control where the participant

fixates at the very beginning. This task yields more fine-grained observations regarding

humans’ eye movements on a single word (O’Regan, Lévy-Schoen, Pynte, & Brugaillère,

1984; O’Regan & Lévy-Schoen, 1987; O’Regan, 1992). Most effects observed in single

word id are also observed in natural reading, though often somewhat attenuated due to

context and preview (Rayner & Well, 1996).
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Through eye-tracking experiments using natural reading, isolated word identification,

and other paradigms, researchers have reached the consensus that word identification can

be considered as a primary driving force of eye movements. They also agree that both

visual and linguistic factors matter for deciding when and where to move the eyes. With

this in mind, any model of eye movements in reading should be able to reproduce typical

eye movement patterns found in human reading experiments.

1.2. Rational models of reading

Rational models of reading frame the reading behavior as a process in which readers

move eyes to seek information that maximizes word identification efficiency (Bicknell &

Levy, 2010, 2012b; Legge et al., 1997, 2002). Specifically, readers combine visual and

linguistic information to make a guess about the text identity. One of the earliest models

is Mr. Chips (Legge et al., 1997, 2002), which models visual input as veridical characters

from a window around the fixation, and models linguistic input as word frequency. Eye

movements target the position that minimizes expected entropy about the word. Later

rational models use a more realistic word identification model, which suggests that visual

input is noisy rather than veridical. Specifically, they consider word identification to be a

Bayesian belief updating process, in which a prior distribution over possible identities of

the word given by the language model is combined with a likelihood term given by ‘noisy’

visual input conditional on the fixation position to form a posterior distribution over the

identity of the word (Bicknell & Levy, 2010, 2012b). Eye movements are performed to
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gather visual information from a position where the reader is uncertain, if the probabil-

ity of the most likely character at that position falls below some predefined confidence

thresholds.

These models provide a unified explanation of the mechanism underlying eye move-

ments, which is the rational gathering of visual information for word identification. They

also yielded eye movement patterns similar to human eye movements, such as distribu-

tion of initial landing position on a word (Legge et al., 1997), word length effect (Legge et

al., 1997, 2002), between-word regressions (Bicknell & Levy, 2010), and word frequency

and predictability effects as reflected in several eye movement measures (Bicknell & Levy,

2012b).

1.3. Motivations and approaches

Although the rational model of eye movements in reading provides a natural way to

explain several eye movement phenomena, these phenomena can potentially be explained

by eye movement model with a standard account of word identification, though through

more complicated ways. To better distinguish the rational model from dominant eye

movement models that involve a standard account of word identification, we take two ap-

proaches: one is to examine phenomena for which the rational theory provides qualitative

contrast with dominant models of eye movements, and the other is to quantitatively show

that the rational model better predicts human eye movements than dominant models do.

In general, we obtain a rational model’s predictions by implementing a computational

model and running simulations. Similar to prior work of rational models of eye move-

ments in reading, we consider word identification as Bayesian belief updating (Bicknell &
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Levy, 2010, 2012b). Different from prior work, we focus on the identification of a single

word, instead of a full sentence. This is advantageous because the computational cost

is greatly reduced, allowing researchers to explore various representations of visual and

linguistic information and different eye movement policies. Based on the result of word

identification, namely the posterior distribution, we either get the rational model’s eye

movement strategy and qualitatively compare its behaviors to humans’, or get a met-

ric from the posterior distribution, and quantitatively evaluate its ability to predict eye

movement phenomena and see if its prediction is more accurate than dominant models’

prediction.

In this dissertation, we develop, implement, and evaluate four sets of computational

simulations with the rational model, each of which is focused on a specific aspect of

reading for which either the rational model makes qualitatively different predictions than

models of eye movements that considers word identification in the standard way (namely,

the direction of refixation as a function of the launch site in Chapter 2, and within-word

eye movements as a function of specific word properties in Chapter 3), or the rational

model is expected to provide better quantitative predictions (namely, skipping behaviors

in Chapter 4, and readers’ comprehension for sentences containing critical words with

high frequency neighbors in Chapter 5).

1.4. Overview of chapters

The body chapters of this dissertation consist of four studies that evaluate rational

models of eye movements at a fine-grained level. With Chapters 2 and 4 from published

papers and Chapters 3 and 5 being unpublished work we plan to submit for publication
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soon, each chapter can stand on its own and can be read independently of the others. In

this section, we briefly outline each chapter.

Portions of Chapter 2 have been published as Duan, Y., & Bicknell, K. (2017) [Re-

fixations gather new visual information rationally. In Proceedings of the 39th Annual

Conference of the Cognitive Science Society, 301-306.] Experiment 2 is the only section

not included in the published paper. In this study, we examine where refixations (mul-

tiple fixations made on a word during first-pass reading) go as a function of the launch

site. Specifically, in dominant models of eye movements in reading, visual information

is processed holistically and a word is identified most efficiently when centered in the

visual field. In contrast, rational models consider reading as a process maximizing word

identification efficiency, in which visual information obtained from a series of eye fixations

is processed constructively and is then synthesized to the language discourse. These two

models yield different predictions regarding where the refixations go. The dominant model

predicts that refixations always target the word’s center, while rational models predict

differently: As refixations depend on previous fixations, more backward movements to the

word’s beginning are expected if less information of this part has been obtained prior to

fixating the word – when the prior fixation was further from the word.

We analyze the direction of refixations as a function of the launch site in two human eye

movements corpora, one in English (Dundee corpus) and one in German (Potsdam Sen-

tence Corpus), and find that both corpora show the consistent pattern that the refixations

are more likely to go rightward for closer launch sites, as predicted by the rational account.

We confirm that this pattern is not observed from a dominant model of eye movements

(E-Z Reader) through simulation. We then implement a rational model of refixation, with
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word identification combining visual and linguistic information using Bayesian inference

and eye movement decisions based on the confidence of letter identity at each position

computed from the posterior, and find that this implementation of the rational account

can indeed reproduce the human pattern. These results suggest that the effects of the

launch site on where refixations go are inconsistent with models in which all intentional

refixations target the word center, but are naturally yielded by a rational account of eye

movements in reading.

Beyond the influence of visual information already obtained about a word on where

refixations should go as we examine in Chapter 2, Chapter 3 evaluates more predictions of

the rational account. In this chapter, we further examine the influence of both visual and

linguistic information on both the ‘when’ and ‘where’ decisions of eye movements when

identifying a word. Traditionally, eye movement research consider that separate pathways

involve in deciding when and where to move eyes, leading to the prediction that eye move-

ments target the word center as it minimizes effort needed to identify a word (in terms

of gaze duration and refixation rate). In contrast, a rational model of reading considers

that word identification incorporates both visual and linguistic information interactively

and that eye movements follow an optimal strategy to maximize word identification ef-

ficiency, leading to the prediction that the position that minimizes reading effort is not

only an additive function of initial fixation position and frequency, but also dependent on

the structure of a word. For example, the positions to minimize the identification efforts

are expected to shift towards word beginning for words with a rare beginning, and shift

towards word end for words with a rare end.
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We implement a rational model of eye movements in reading with a policy learned

through deep reinforcement learning, and evaluate its behaviors by comparing them to

human within-word eye movements. We find that the policy learned through reinforce-

ment learning robustly outperforms heuristic policies by achieving higher confidence in

a shorter time, and produces human-like behaviors in terms of overall effects of initial

landing position, word frequency effects, and different reading time patterns for words

with different structures. These results suggest that a rational model of eye movements

in reading is able to explain within-word eye movements as resulting from rational combi-

nations of visual and linguistic information and following optimal eye movement policy to

maximize reading efficiency, whereas dominant models of eye movements not only requires

extra assumptions about word identification and eye movement policy, but also fails to

predict different reading time patterns for words with different lexical structures.

Chapter 4 has been published as Duan, Y., & Bicknell, K. (2020) [A rational model

of word skipping in reading: ideal integration of visual and linguistic information. Topics

in Cognitive Science, 12(1), 387-401. doi:10.1111/tops.12485.] In this study, we examine

how eye movement decisions of skipping a word can be better predicted from the perspec-

tive of a rational model of eye movements in reading, which takes complicated interactions

between visual and linguistic information into account. As observed in empirical studies,

readers intentionally do not fixate some words, thought to be those they have already

identified. In a rational model of reading, these word skipping decisions should be com-

plex functions of the particular word, linguistic context, and visual information available.

In contrast, dominant models of eye movements in reading only predict additive effects

of word and context features. Here we test these predictions by implementing a rational
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model with Bayesian inference and predicting human skipping with the entropy of this

model’s posterior distribution. Results showed a significant effect of the entropy in pre-

dicting skipping above a strong baseline model including word and context features. This

pattern held for entropy measures from rational models with a frequency prior, though

not from models with a 5-gram prior. These results suggest complex interactions between

visual input and linguistic knowledge as predicted by the rational model of reading, and

that taking this into account provides better predictions for human skipping decisions

better than dominant models of eye movements in reading.

In Chapter 5, we extend previous chapters’ work of modeling eye movements for word

identification into an application of using a rational model of eye movements to pre-

dict the outcome of reading a sentence. Specifically, we examine to what extent could

comprehension be predicted from eye movements and whether eye movements predict

comprehension in the way that rational models of reading expect by looking into the

identification of words with a high frequency neighbor (HFN) during sentence reading.

We directly test the rational model’s predictions by examining machine learning models’

performance with a feature generated from a rational model of reading, namely the (logit-

transformed) probability of the target word. Results suggest that comprehension can be

better predicted with an integrated metric generated by the Bayesian belief updating

model of reading than with eye movement features alone. These results provide support-

ive evidence for the perspective of considering eye movements as rational behaviors of

gathering visual information for text identification.
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Chapter 6 summarizes the findings and how one can use the models proposed in this

dissertation to further the understanding about rational eye movement decisions during

reading.
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CHAPTER 2

Word Identification is Constructive: Refixation Seeks New

Information1

2.1. Introduction

Reading is a complex information processing task with a goal usually related to com-

prehending the text. In general, accurate text comprehension requires the identification

of many (if not most) of the words in a text. It is not surprising, then, that decades of

research on eye movements in reading have established that word identification can be

seen as the primary driver of eye movements (Rayner, 1998). A substantial body of work

has studied the role in this process of many information sources relevant to word iden-

tification in reading, including especially word frequency and in-context predictability,

among others. However, although visual information is the primary source of information

used to ultimately identify a word, the fundamental way in which visual information is

used in word identification remains unresolved.

In the standard model of word identification in reading, word identification is hy-

pothesized to be a holistic process, during which visual information about the word as a

whole constrains the efficiency of identification. Eye movement studies have shown that a

word presented in isolation is most rapidly identified when fixating approximately at its

1Portions of this chapter have been published in Duan, Y., & Bicknell, K. (2017). Refixations gather
new visual information rationally. In Proceedings of the 39th Annual Conference of the Cognitive Science
Society, 301-306.
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center (O’Regan, 1990, 1992). It has also been found in natural reading that the fixation

position that minimizes gaze duration (the total amount of time spent fixating a word in

first pass) and refixation probability (the probability of making more than one fixation

on a word in first pass) is on average at or slightly left of the center (Rayner, Sereno, &

Raney, 1996). One explanation for these results is that when the word center is directly

fixated, the largest possible part of the word falls in the central high-acuity portion of

the visual field (the fovea), yielding the highest-quality visual input of the whole word;

as the fixation deviates from the center, more letters of the word fall out of the fovea and

suffer from a rapid drop in acuity, leading to poorer visual information about the overall

word. Following this interpretation, it is hypothesized that visual processing efficiency of

a word is maximized when fixating at word center, and decreases with increasing distance

between word center and fixation position. This standard holistic account is incorporated

in dominant eye movement models of eye movement control in reading (e.g. E-Z Reader,

Reichle et al., 2009; and SWIFT, Engbert et al., 2005).

Alternatively, word identification may not utilize visual information holistically, espe-

cially in natural reading. Unlike in isolated word identification where information about

a word comes only from visual input obtained by directly fixating it, in natural reading

information about a word comes from more sources. These include contextual informa-

tion from the preceding text and visual information obtained from fixations close to but

not on the current word, which may still yield some visual preview of the word’s initial

letters. As a result, the most efficient positions from which to obtain useful new visual

information about the word can vary from trial to trial, dependent on the information

already obtained. Even in such an account, it is still possible that, on average, the most
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efficient positions are located near the center (as has been found in prior work). This

account of word identification is implemented in rational models, which consider reading

as a process of combining information from various sources to identify words and mak-

ing eye movement decisions to maximize identification efficiency (Bicknell & Levy, 2010,

2012b; Legge et al., 1997, 2002). For example, if a reader in this framework is working to

identify a particular word, considering all the information that has already been gathered,

there may be parts of the word that the reader has already identified relatively well and

parts that are still relatively uncertain. It is intuitive in such a situation that identifica-

tion efficiency will be maximized by moving the eyes next to the part of the word about

which the reader is still relatively uncertain. This is because such fixations would obtain

fine-grained visual information of a particular part of the word, which can be combined

with visual information obtained from previous fixations (as well as linguistic contextual

information), and identify the word in a constructive manner. Thus, contrary to the holis-

tic account’s view that any fixation landing on a non-central position slows identification

efficiency relative to a central fixation, the view from rational models is that the position

in the word to move the eyes next to maximize identification efficiency will vary from trial

to trial and depend on information already obtained.

A phenomenon that can be used to tease apart these two accounts is that of refixations,

cases in which a word is fixated more than once during first-pass reading. The goal of

an intended refixation is assumed to be moving the eyes to a position that will maximize

identification efficiency of the current word. Despite previous experiments showing that

refixation rate varied on average as a quadratic function of the distance between word

center and the fixation position (McConkie et al., 1989) and was influenced by linguistic



33

properties such as word frequency (Rayner et al., 1996), few studies shed light on where

refixations go. The two accounts of word identification make different predictions for this

question. The rational model predicts that refixations target the part of the word about

which sufficient information has not yet been obtained. Which part of the word this is

depends on the visual information already available.2 In contrast, the standard model of

word identification predicts that refixations should always target the center to maximize

the holistic visual processing efficiency of the word, independent of information obtained

about different parts of the word.

Naively, then, we could tease apart these two hypotheses by analyzing the relationship

between the position of the initial fixation on a word (the ‘landing position’) and the

refixation position. The rational account would predict that if the landing position is at

the beginning of the word, a refixation should be at the end, and vice versa, whereas the

standard model would predict that all refixations cluster around the center, regardless

of the landing position. Empirically, this prediction of the rational models is borne out

(Rayner et al., 1996), but the standard model explains this phenomenon in a different way.

Specifically, there is a concept of systematic error (McConkie et al., 1988), which suggests

that intended saccade sizes become biased toward the overall average saccade size. This

means that refixation saccades intended to be short and target the center of the word in

the standard model will tend to overshoot their target, landing on the opposite end of the

word. Thus, both the standard model combined with systematic error and the rational

model predict the effect of landing position on where refixations go.

2In general, the most efficient place to move the eyes next in a rational model depends not just on
visual information already obtained but also contextual information. For the present paper, we ignore
contextual information for simplicity.
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Analyzing where refixations go as a function of the location of the previous fixation

made before fixating a word (the ‘launch site’), however, can tease apart these two ac-

counts, when controlling for effects of landing site. If a reader’s first eye movement to the

word is launched from a position close to the word, then more visual information about

the word’s beginning should be available (relative to the launch site being further away),

holding constant the landing site. Therefore, rational models predict that for closer launch

sites, a refixation should be less likely to move the eyes back toward the beginning of the

word (Fig. 2.1, right panel). In contrast, the standard model would not predict such an

effect, but predict that an intentional refixation that follows a fixation on the left half of a

word should always go forward, while one that follows a fixation on the right half should

always go backward, always targeting the word center (Fig. 2.1, left panel).

In this paper, we empirically evaluate these two competing predictions by performing

a statistical analysis of where refixations go in a large eye movement corpus, and we

compare these results to simulations from computational models of both accounts. In the

next section, we report the results of our statistical analysis of human refixation data,

showing that it is as predicted by the rational account. We then confirm that an eye

movement model that implements the standard model cannot accommodate this finding

by performing simulations with E-Z Reader (Reichle et al., 2009). After that, we describe

our rational model of refixations. Finally, we confirm that simulations using it show the

same qualitative pattern as the human data, and then conclude.
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Figure 2.1. The standard model and the rational model make different pre-
dictions for where refixations go. For the standard model, refixations always
target the center of the word, regardless of launch site. For the rational
model, refixations target positions where character identity has low con-
fidence (here represented by hypothetical m(j) values). Therefore, closer
launch sites, which provide more visual information about the word’s initial
letters (schematically represented here by grey rectangle) predict refixations
are more likely to move forward. The refixation decisions here are based on
eye movement policy parameters of α = .9 and β = .7. (See Eye movement
policy section for more details.)

2.2. Experiment 1: Human data in Dundee corpus

This analysis aims to tease apart the predictions of the rational model and the standard

model on where refixations go. Specifically, we use the English part of the Dundee corpus

(Kennedy, 2003) of eye movements during natural reading, and analyze the direction of

refixation as a function of launch site, statistically controlling for landing site.
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Methods

Data. The English part of the Dundee corpus contained eye movement records from

10 native English-speaking participants as they read through newspaper editorials (see

Kennedy & Pynte, 2005 for further details.) We first did a set of screening procedures,

according to criteria that are generally applied to eye movement data, to remove fixa-

tions involving blinks, non-first-pass fixations, and the first/last two fixations of the line.

After this procedure, the corpus contained 23,854 fixations that were followed by a refix-

ation during first-pass reading (18.9% of first-pass fixations). These data then underwent

screening procedures excluding: (a) extremely far launch sites (1%), leaving the launch

sites of fixations in the range [−16,−1] (in terms of number of characters from word

beginning); (b) fixations that landed on the space right before the word (25.5%) or on

the last character of the word (4.7%) to ensure the variability of refixation directions;

and (c) fixations on words of which the previous word was skipped to eliminate possible

overshootings of the previous word (20.9%), since these can be followed by corrective

saccades. In the end, the data consisted of 7,667 fixations.

Statistical analysis. A logistic generalized linear mixed-effects model (GLMM) was

used to analyze the direction of refixations (forward vs. backward). Fixed effects in-

cluded launch site and combinations of word length and landing site, which controlled for

arbitrary effects of word length and landing site on refixation direction. Random effects

included a random intercept and slope of launch site by subjects. Significance testing was

via likelihood ratio test. All statistical analyses were implemented in the R environment,

using the glmer function from the lme4 package (Bates, Mächler, Bolker, & Walker, 2015)

for GLMM implementation. In order to ensure model convergence, word length–landing



37

site pairs for which all refixations (or all but 1) moved in the same direction were excluded,

leaving 6714 fixations (87.6%).

Results and discussion

Fig. 2.2 shows the effect of launch site on the probability that refixations move forward for

each word length–landing site pair. The GLMM showed that nearer launch sites predicted

significantly more forward refixations, β̂ = 0.15, SE = 0.03, χ2
1 = 13.98, p < 0.001, 95%

confidence interval (CI) = [0.10, 0.20]. As reported in the following section, the standard

model can accommodate this effect only for landing sites on the right half of the word.

To see whether this was also true of the human data, separate analyses were carried out

for fixations with landing sites on the left and the right half of the word. For the left half

(4790 fixations), launch site predicted more forward refixations, β̂ = 0.16, SE = 0.03,

χ2
1 = 10.91, p < 0.001, 95%CI = [0.09, 0.22], and the same was true for the right half

(1362 fixations), β̂ = 0.14, SE = 0.04, χ2
1 = 7.40, p < 0.01, 95%CI = [0.05, 0.22]. As

shown in Fig. 2.3 (left panel), which is plotted with all data of left half aggregated, the

estimation from a GAMM on the probability of forward-moving refixations increases as

launch sites get close to the word. These observations that closer launch sites predicted

more forward-moving refixations confirm the rational model’s predictions. The separate

analyses of fixations on the left and right halves of the word indicated that this effect

generalized across both.
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Figure 2.2. Effect of launch site on proportion of forward-moving refixations
on data from Dundee corpus. Each panel contains data from a combination
of word length and landing position, and shows a GAM smoother.

2.3. Experiment 2: Human data in Potsdam Sentence Corpus

To further confirm that the effect of launch site on the direction of refixations we

observed in Expt. 1 is robust and does not result from specificity of the English language

and/or the reading material, we examine the effect on a different eye movement corpus.

Specifically, we carry out the same analysis as in Expt. 1 on the Potsdam Sentence Corpus

of eye movements (PSC). This corpus differs from the Dundee corpus in language, type

of text, and number of participants: 1) PSC is reading data of German while Dundee is

reading data of English; 2) in PSC readers read single sentences from reading experiments
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Figure 2.3. GAMM estimation of effect of launch site on proportion of
forward-moving refixations on data from Dundee corpus (left panel) and
PSC corpus (right panel) with initial fixations landing on left-half of the
word.

while in Dundee corpus readers read continuous text from a newspaper; 3) PSC consists of

a large number of participants (273 readers) reading short sentences while Dundee corpus

consists of a few participants (10 readers) reading long texts. Observing the same effect

on PSC as we found in the Dundee corpus – closer launch sites predict more forward

fixations – will provide more evidence in favor of the rational model of word identification

in reading.
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Methods

Data. The dataset contained eye tracking data from 275 German-speaking participants as

they read the Potsdam Sentence Corpus, which consisted of 144 single German sentences

with a large variety of grammatical structures around a set of target words (See Kliegl et

al., 2006 for further details about the corpus.)

The data cleansing procedure was the same as that in Expt. 1. Only the fixations

followed by a refixation were included, which consisted of 13,940 fixations. These data

then underwent screening procedures excluding: (a) fixations with launch sites higher

than 99% of all launch sites, leaving the launch sites in the range [-13,-1] (in terms of

number of characters from word beginning); (b) fixations that landed on the space right

before the word (27.8%) or on the last character of the word (7.3%) to ensure variability

of refixation directions; and (c) fixations on words of which the previous word was skipped

to eliminate possible overshootings of the previous word (17.3%). In the end, the data

consisted of 6,505 fixations.

Statistical analysis. A GLMM and a GAMM with the same fixed and random effects

as that in Expt. 1 was adopted to analyze the effect of launch sites on refixation direction.

Excluding word length-landing position pairs where all refixations (or all but 1) moved in

the same direction left 4,220 fixations (64.9%).

Results and discussion

Fig. 2.4 shows the effect of launch site on the probability that refixations move forward

for each word length-landing site pair. Similar to the results of Expt. 1, the GLMM

model showed that nearer launch site predicted significantly more forward refixations
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(b̂ = 0.17, SE = 0.03, χ2
(1) = 23.48, p < 0.001, 95%CI = [0.10, 0.23]). The same pattern

held for both data with landing positions on the left half of the word (3,562 fixations;

b̂ = 0.17, SE = 0.04, χ2
(1) = 14.04, p < 0.001, 95%CI = [0.09, 0.25]), and the right

half (271 fixations; estimated from a GLM to ensure convergence) (b̂ = 0.42, SE = 0.11,

χ2
(1) = 19.25, p < 0.001, 95%CI = [0.22, 0.66]). Fig. 2.3 (right panel) shows the GAMM

estimation of the effect of launch site with all data of left half aggregated, holding a similar

pattern as that of the Dundee corpus. We observe similar results that closer launch sites

predicted higher probability of refixations moving forward despite that the PSC differs

from the Dundee corpus in several aspects, indicating that the effect of launch site stays

robust across different languages and tasks.

2.4. Experiment 3: E-Z Reader

This section aims to show that the standard model does not predict the effect of launch

site on direction of refixations. To this end, we carry out the same analyses as the previous

section on simulation data from E-Z Reader, a computational model of eye movements in

reading that incorporates the standard holistic model of word identification, and always

targets refixations to the center of words. In principle, then, all intentional refixations

following a fixation on the left half of the word should move forward and those following

a fixation on the right half should move backward. Simulations with an implemented

version of this model help to ensure that unintentional refixations – saccades intended for

another word that happen to become a refixation due to motor error – do not in general

change these predictions.
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Figure 2.4. Effect of launch site on proportion of forward-moving refixations
on data from PSC corpus. Each panel contains data from a combination of
word length and landing position, and shows a GAM smoother.

Methods

Data. We used E-Z Reader 10 (Reichle et al., 2009) to generate eye movement data for

100,000 virtual readers reading sentences from the Schilling corpus (Schilling et al., 1998)

of single English sentences typical of reading experiments. Each virtual reader was a

simulation completed using a Monte Carlo run of the model.

The data cleansing procedure was the same as that in Expt. 1. Out of the 20,189,603

first-pass fixations, 3,417,999 (16.9%) of them were followed by a refixation. Excluding
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extreme launch sites, fixations landing on initial or final letters of a word, and skipping

of the previous word left 1,029,801 fixations. Launch site ranged between [−15,−1].

Statistical analysis. A generalized linear model (GLM) with the same fixed effects as

that in Expt. 1 was adopted to analyze the effect of launch sites on refixation direction.

Random effects were removed from the GLMM used for Expt. 1 since the virtual read-

ers were simply different Monte Carlo runs with no systematic differences. Excluding

word length–landing position pairs where all refixations (or all but 1) moved in the same

direction left 899,838 fixations (87.4%).

Results and discussion

Fig. 2.5 shows the effect of launch site on the probability for refixations moving forward.

The GLM showed that nearer launch site predicted significantly more forward refixations,

β̂ = 0.08, SE = 0.004, χ2
1 = 386.66, p < 0.001, 95%CI = [0.07, 0.09]. However, this effect

was driven by fixations landing on the right half of the word, β̂ = 0.10, SE = 0.004,

χ2
1 = 542.99, p < 0.001, 95%CI = [0.09, 0.11], while fixations landing on the left half had

99% refixations moving forward and yielded an opposite effect, β̂ = −0.33, SE = 0.03,

χ2
1 = 147.37, p < 0.001, 95%CI = [−0.39,−0.27]. In Fig. 2.6 (left panel) plotted with all

data of left half aggregated, the proportion of forward refixations kept as a constant right

below 100% and did not vary as launch sites changed.

Therefore, E-Z Reader does not in general predict that closer launch sites should lead

to refixations being more likely to go forward, contrary to our observations on the human

data, although it can accommodate such a prediction for fixations on the right half of

the word. Although this effect on the right half of the word may seem surprising, we
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note that the predictions we described above for this account only hold for intentional

refixations. We believe that this effect on refixations on the right half of the word arises

from unintentional refixations. Specifically, for a fixation position on the right half of

a word, the E-Z Reader model will generally execute one of two behaviors: initiating a

saccade to refixate the word or initiating a saccade to move on to the next word. In this

case, an intended refixation will target a leftward position (since the center of the word is

to the left of fixation) and an intended saccade to the next word will target a rightward

position. Which of these two behaviors occurs depends on how quickly the identification

(or more technically, L1) is completed for the current word. Closer launch sites mean that

identification of the word will be completed more quickly, which in turn will lead to a

greater chance of making a forward saccade intended for the next word. Assuming some

of these forward saccades become unintentional forward refixations, this creates exactly

the predicted relationship between launch site and refixation direction. For the present

purposes, however, the main conclusion here is that the standard model cannot reproduce

a general effect of launch site on refixation direction.

2.5. Rational models of reading

In this section, we describe an implemented rational model of refixations, which we will

use in the next section to confirm that the intuitively-derived predictions of the rational

account for the relationship between launch site and refixations are actually produced

by an implemented rational model. Rational models of reading use Bayesian inference

to combine visual information with language knowledge (e.g., contextual information).

Based on the posterior distribution, eye movements are selected to maximize identification
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Figure 2.5. Effect of launch site on proportion of forward-moving refixations
in data from E-Z Reader simulation. Each panel contains data from a
combination of word length and landing position and shows a GAM
smoother.

efficiency. The rational model of refixations we describe in this paper also follows this

idea, and can be viewed as an application of the more general-purpose rational models of

eye movements in reading to the specific situation of refixations. This section introduces

the framework of our model.

2.5.1. Word identification as Bayesian inference

Word identification consists of Bayesian inference, in which a prior distribution over pos-

sible identities of the text given by its language model is combined with a likelihood term
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Figure 2.6. GAM estimation of effect of launch site on proportion of
forward-moving refixations on data from E-Z Reader (left panel) and ratio-
nal model (right panel) simulation with initial fixations landing on left-half
of the word.

given by ‘noisy’ visual input at the position of fixation to form a posterior distribution over

the identity of the text given all information sources. Formalized with Bayes’ theorem,

p(w|I) ∝ p(w)p(I|w)(2.1)

where the probability of the true identity of the word being w given uncertain visual input

I is calculated by multiplying the language model prior p(w) with the likelihood p(I|w)

of obtaining this visual input from word w, and normalizing.

In general, the prior p(w) represents reader expectations for words conditioned on

the context, but for the present paper, we ignore context and use only a word frequency
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model for simplicity. The visual likelihood is computed similarly to in (Bicknell & Levy,

2010): each letter is represented as a 26-dimensional vector with a single element being

1 and the rest being 0s. Visual input about each letter is accumulated iteratively over

time by sampling from a multivariate Gaussian distribution centered on that letter with a

diagonal covariance matrix Σ = λ−1I, where λ is the reader’s visual acuity for that letter.

Visual acuity depends on the location of the letter in relation to the point of fixation,

which is a function of the letter’s eccentricity ε. In our model, we assumed that acuity is

a symmetric, exponential function of eccentricity:

λ(ε) =

∫ ε+.5

ε−.5

1√
2πσ2

exp(− x2

2σ2
)dx(2.2)

with σ = 3.075, the average of two σ values for the asymmetric visual acuity function

(σL = 2.41 for the left visual field, σL = 3.74 for the right visual field) used in (Bicknell &

Levy, 2010). In order to scale the quality of visual information, we multiply each acuity

λ by the overall visual input quality Λ, which is set to 12 in our simulation (see Expt. 4

below).

2.5.2. Eye movement policy

Based on the posterior distribution on possible identities of the word, eye movement

decisions are selected to maximize reading efficiency. For example, the first rational

model of reading, Mr. Chips, used this optimizing principle: the model reads input text

sequentially, without error, in the minimum number of saccades (Legge et al., 1997, 2002).

Specifically, saccades were made to minimize the expected entropy of the current word

after the next fixation.
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In a more recent rational model of eye movements in reading (Bicknell & Levy, 2010,

2012b), eye movement decisions depend on the uncertainty of the posterior distribution

about each letter position. Specifically, given a fixation landing on an unknown character

c in position j, the marginal probability m of the most likely character under the posterior

is

m(j) = max
c
p(wj = c)(2.3)

where wj indicates the character in position j. A high value of m(j) indicates relative

confidence about the character’s identity, and a low value relative uncertainty. The model

then decided between four possible actions based on m(j): continuing to fixate the current

landing position, moving backward, moving forward, and ending the reading process.

We use a similar eye movement policy in our refixation model. If the value of the

aforementioned statistic m(j) is less than a parameter α, the model chooses to continue

fixating the current position. Otherwise, if the value of m(j) is less than the parameter

β for some leftward position, the model initiates a saccade to the closest such position.

If no such positions exist to the left, then the model initiates a saccade to the closest

position to the right for which m(j) < α. Once a refixation is executed, the simulation

ends. If all m(j) values to the right (left) are above α (β), we decide this word is identified

with a satisfactory uncertainty level, and the identification of this word ends. In such a

situation, we expect that the eyes move to the next word, which is beyond the current

paper’s scope of studying refixations.

The actual landing position is the intended fixation position with random motor error:

the actual landing position `i is sampled from a Gaussian centered on the intended target
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ti with standard deviation given by a linear function of the intended saccade distance

`i ∼ N (ti, (σ0 + σ1|ti − `i−1|)2)(2.4)

for some linear coefficient σ0 and σ1.
3 In Expt. 4 in this paper, we follow the SWIFT

model in using σ0 = 0.87, σ1 = 0.084. A refixation occurs if the actual landing site of the

next fixation falls on the same word.

2.6. Experiment 4: Rational model

In this section, we analyze simulated data from our rational model of refixations to

verify that it does indeed make the prediction that we derived from it intuitively: that

refixations would be more likely to move forward for closer launch sites. As described

in the previous section, the rational model of refixations we use combines information

from previous fixations (including the launch site) to form a posterior distribution on the

identity of a word through Bayesian inference. It then makes refixation eye movements

to parts of the word about which it is uncertain.

Methods

Model parameters. For the language model component of the word identification model

(the prior), we used word frequency information (a unigram model) from the Corpus of

Contemporary American English (COCA) (Davies, 2016). For this simulation, we did not

optimize the behavior policy parameters to maximize reading efficiency as in (Bicknell &

Levy, 2010), but set them manually to what we surmised might be reasonable values

3Note that motor error in a rational model has only random error (variance), but not systematic error
(bias).
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of α = 0.9 and β = 0.7. Future work will optimize them, but we do not expect the

qualitative predictions relevant to this analysis to change.

Data. Eye movement data were generated to identify a word. All words were in the

most frequent 5,000 words in COCA, and word lengths ranged between [3, 10]. Launch

site had a range of [−10,−1]. For each word length, each possible landing position, and

each launch site, 200 trials were run to model the word identification process as when a

fixation landed on that landing position, preceded by a fixation on that launch site. In

each trial, a word was randomly selected uniformly from words with the same length.

Procedure. Each trial began with a fixation with a duration of 200 time steps on the

launch site, in order to represent the visual information obtained prior to fixating the

word. Then, the fixation at the landing site began. On each timestep of that fixation,

visual information was obtained and integrated with prior information to update the

posterior, and then a behavior decision was made: whether to continue fixating, make a

refixation, or stop reading (see model description).

Statistical analysis. A GLM with the same fixed effects as that in Expt. 3 was adopted

to analyze the effect of launch site on refixation direction. Excluding word length–landing

position pairs where all refixations (or all but 1) moved in the same direction left 25,636

fixations.

2.6.1. Results and discussion

Fig. 2.7 shows the effect of launch site on the probability for refixations moving forward.

As expected, the GLM showed that nearer launch site predicted significantly more forward

refixations, β̂ = 0.07, SE = 0.005, χ2
1 = 187.62, p < 0.001, 95%CI = [0.06, 0.08]. The
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Figure 2.7. Effect of launch site on proportion of forward-moving refixations
in data from rational model simulation. Each panel contains data from a
combination of word length and landing position and shows a GAM
smoother.

same pattern held for both data with landing positions on the left half of the word,

β̂ = 0.04, SE = 0.008, χ2
1 = 28.85, p < 0.001, 95%CI = [0.02, 0.06], and the right half,

β̂ = 0.12, SE = 0.009, χ2
1 = 179.38, p < 0.001, 95%CI = [0.10, 0.14]. These results

confirm that an implemented rational model does indeed make this prediction, which we

observed in Expt. 1 and Expt. 2 to hold of human data.
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2.7. General discussion

In this paper, we investigated how visual information is used for word identification

during natural reading. We compared two accounts: (1) the standard holistic model,

in which visual information about the word as a whole is used in word identification,

and processing is always most efficient from the center; and (2) a rational model, in

which readers combine information from many sources to identify a word constructively,

and the fixation location that maximizes identification efficiency depends on what prior

information has been obtained. We suggested that these two models make divergent

predictions for the possible effects of launch site on where refixations go. Specifically,

only the rational model should predict that refixations are more likely to go rightward for

closer launch sites. An analysis of a large human eye movement corpus confirmed that

this prediction of the rational account holds in human data. Model simulations confirmed

that a rational model does indeed predict it, and that at least one of the implementations

of the standard model (E-Z Reader) could not accommodate this finding.

These findings seem strongly inconsistent with models in which all intentional refixa-

tions target the center of a word, which in turn suggests that the standard holistic model

of word identification in reading may be incorrect. However, it is possible to imagine

that other refixation targeting schemes could be used even if the holistic model of word

identification in reading is correct. For example, even under the standard model, it might

be a useful strategy to target a refixation further forward in a word when that word is

closer to being identified. Even if there is an efficiency penalty for being away from the

center while that word is finished being identified, that penalty might be outweighed by
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the benefits of being closer to the next word when the reader’s attention (soon) turns to

it.

While it’s possible that such eye movement models could be constructed while main-

taining the standard model of word identification, our findings are completely consistent

with the predictions of rational models of reading, and suggest that these models should

be more fully explored. Here, we focused specifically on how visual information already

obtained about a word influences where refixations should go, but rational models predict

that the interaction of visual and linguistic information is what should ultimately matter.

Future work should test these more complex predictions.
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CHAPTER 3

A Rational Model of Within-word Eye Movements via

Reinforcement Learning

3.1. Introduction

One of the most important channels through which humans interact with the world

is reading, the visual processing of language. During reading, readers acquire perceptual

input by moving their eyes across the text, identify characters and words by integrating

visual input and language knowledge, and extract meaning from this integrated represen-

tation. To achieve the goal of comprehending the text, a reader is expected to identify

most (if not all) words in the text. We already know from a substantial body of empirical

work that readers identify words by utilizing information from various sources, and that

readers are able to adopt different eye movement strategies according to the information

available. For example, readers take longer to identify low frequency words than high fre-

quency words, whereas they tend to skip words that are short and predictable (see Rayner,

1998 for an extensive review). As word identification is fundamental for visual language

processing and is the primary driver of eye movements, understanding how readers decide

when and where to move their eyes to best identify a word contributes to understanding

reading language comprehension, and also to understanding information processing and

decision making in human cognition in general.
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By conducting experiments with human participants and recording their eye move-

ments as they read, ample evidence has shown that readers do not move their eyes ran-

domly during word identification. Rather, readers decide when to stop reading and where

to move the eyes next depending on the knowledge of the current world (i.e., an eye-mind

link exists). The decision of when to stop reading is believed to be associated with cogni-

tive, word-level features, such as word frequency (Kliegl et al., 2004; Rayner et al., 1996;

Schilling et al., 1998) and predictability of the word in the context (Balota et al., 1985;

Rayner, Slattery, Drieghe, & Liversedge, 2011). The decision of where to fixate next is

believed to involve visual features, such as word length (Brysbaert & Vitu, 1998; Vitu,

1991), though this question has been studied to a lesser extent.

In the area of eye movements in reading, researchers usually consider that when and

where to move the eyes involve separate processes (Rayner, 1998). A common assumption

is that the time needed to process a word is associated with word difficulty, which can be

predicted from word frequency and contextual predictability. Fixating a position other

than the word center leads to additional time cost, which is a function of the distance

between the fixation position to the word center. To best identify the word, readers always

target the word center, although saccade errors add noise to the actual landing position.

These assumptions are widely accepted and implemented in eye movement models (e.g.

E-Z Reader Reichle et al., 2009 and SWIFT Engbert et al., 2005). The reason behind

these modeling assumptions is that visual acuity drops quickly away from the fovea (i.e.

a small region of the retina that covers the central two degrees of the visual field) and

fixating the word center yields best-quality visual input over the whole word. These

models (Reichle et al., 2009; Engbert et al., 2005) involve several parameters, which are
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estimated by fitting human eye movement corpora, and not surprisingly, eye movement

behaviors generated by these models are similar to humans’ in terms of several effects

(e.g. word frequency effect, word length effect, etc.) and measures (e.g. gaze duration,

refixation rate, skipping rate, regression rate, distribution of initial landing position, etc.).

Although the aforementioned models of eye movements fit human data well, they are

built upon several assumptions and principles, which merely reflect researchers’ expert

knowledge about the relationship between eye movement measures and static, word-level

features, rather than add insights into how eye movements born out of online cognitive

process. A general framework that provides insights of this kind is to consider eye move-

ment control as making decisions to optimize reading efficiency under perceptual, cogni-

tive, and motor constraints. Following the idea of rational analysis (Anderson, 1990), by

studying to what extent human eye movements are similar to those generated from an

optimized strategy under certain conditions and constraints, researchers can understand

what information is available to human readers, and whether human eye movements can

be explained as approximation of the optimized strategy.

One study that follows this idea is Reichle and Laurent (2006), which compares human

eye movements to an optimal strategy learned from reinforcement learning. Specifically,

this model relieves the assumption that readers always target word center, while still

maintains other assumptions about word identification, assuming that word difficulty

predicts the reading time required for identifying a word. This study examines if human-

like patterns of eyes movements can naturally emerge as a virtual reader optimize its

behaviors to maximize the total reward of reading a ‘sentence’ consisting of words of

different lengths. Regarding word identification, they consider that the time required to
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identify a word is a function only of its length and the relative position of the eyes to the

word center. This model generates skipping, refixation rate, and first fixation position

distributions similar to humans. However, due to the oversimplified word identification

model, this model could not yield any linguistic effect.

Another line of research challenges the assumption that a word is identified by being

fixated for enough time. They explicitly take visual information into account, and con-

sider that information from various sources is combined to identify a word (Bicknell &

Levy, 2010, 2012b; Legge et al., 1997, 2002). Specifically, visual information and language

knowledge are combined to yield a probabilistic distribution over the text identity. Suc-

cessful word identification means that the correct word is the only word with the highest

probability, and all other words have probabilities much lower than the correct one. To

achieve this, eye movements are performed rationally, obtaining particular pieces of visual

evidence that are most useful given the current probability distribution over words. This

model of reading explains eye movement behaviors as driven by the rational gathering of

visual evidence to best identify the text.

Rational models of reading have been shown to generate predictions that align well

with human behaviors for several eye movement phenomena. To name a few, these phe-

nomena include distribution of initial landing position on a word (Legge et al., 1997), word

length effect (Legge et al., 1997, 2002), between-word regression (Bicknell & Levy, 2010),

word frequency and predictability effect as reflected in several eye movement measures

(Bicknell & Levy, 2012b), the effect of launch site on the direction of refixation (Duan

& Bicknell, 2017), and word skipping (Duan & Bicknell, 2020). However, there are still

places where these models could improve. On one hand, a model that explains both where
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to move the eyes and when to move the eyes is missing for identifying a single word, as

existing models only focus on where to move the eyes (Duan & Bicknell, 2017, 2020). On

the other hand, although a model that jointly explains when and where to move the eyes

exists, the policy (i.e., the mapping from the agent’s current knowledge state to eye move-

ment decisions, where the agent’s current knowledge can include information such as the

probabilities of possible words and the current fixation location) is constrained (Bicknell

& Levy, 2010). Specifically, the policy considers the reader’s confidence about the iden-

tity of the letter at each position, and moves the eyes to the most uncertain position by

referring to two predefined confidence thresholds. Although this policy can approximate

optimal decisions by adjusting predefined thresholds, they just cover a restricted policy

space, which consists of all policies defined with all possible combinations of confidence

thresholds but no any other policies (e.g., say, a policy that requires different confidence

thresholds for identifying the current character, any letter to the left, and any letter to the

right, and thus needs three confidence thresholds to describe). It is not always clear how

the confidence thresholds are determined; they are either determined by referring to an

expert’s intuition (Bicknell & Levy, 2012b; Duan & Bicknell, 2017), or by comparing the

performance of several thresholds (Bicknell & Levy, 2010). Better policies are likely to

exist in broader policy space, and only by finding such a policy can we say that this policy

is optimal given the reader’s knowledge of the current world, without extra constraints.

In this study, we propose a rational model of reading that extends previous rational

models of reading to include a policy that maps knowledge of the current word to eye

movement decisions by exploring an unrestricted policy space using reinforcement learning

(RL). For simplicity, we focus on eye movement behaviors during identifying a single word.
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In what follows, we first introduce the eye movement phenomena and explain why existing

rational models of reading may not yield full explanations for those phenomena. We then

introduce our model by stating the eye movement decision making problem under the

framework of RL, and our implementation of this idea using deep reinforcement learning

to map states of the current world to actions of eye movements in an end-to-end fashion.

We report experiment results using this model to generate eye movements in a word

identification task. We evaluate the model’s behaviors by comparing them with human

data. We provide evidence that the policy learned by RL robustly outperforms other

restricted policies and yields eye movement patterns similar to humans’ eye movements

across different settings.

3.2. Within-word eye movements

As previous studies have provided evidence that eye movement patterns at a whole-

word level, such as word length effect and word frequency effect, can be well-explained

under a rational model of reading, we attend to fine-grained eye movements at a within-

word level. We especially focus on how reading efforts vary by initial fixation position.

3.2.1. Human within-word eye movements

In human reading studies, researchers have found that readers tend to make the first

fixation on a word close to the optimal viewing position (OVP), at which position readers’

effort needed to recognize a word is minimized (O’Regan, 1992; O’Regan & Lévy-Schoen,

1987). Specifically, researchers have observed that when readers’ first fixation lands on the

OVP, they identify a word with a shorter period of time and fewer fixations, as reflected
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in shorter gaze duration (i.e., the sum of all fixations made on a word before making

a saccade to another word) and lower refixation rate (i.e., the probability that a word

is fixated a second time) respectively, than they start from other positions of the word

(McConkie et al., 1989; O’Regan et al., 1984; O’Regan & Lévy-Schoen, 1987; Rayner

et al., 1996). This effect is observed across isolated word recognition tasks and natural

reading tasks, and is usually presented as a somewhat U-shaped curve with the lowest

point located close to and slightly to the left of the word center.

Previous studies also observed complicated interactions between visual information

and lexical knowledge regarding the best position to minimize reading times. In fact, the

overall pattern that gaze duration is minimized if the reader fixates a letter position close

to and to the left of word center does not hold for every word. Rather, OVPs differ for

different words depending on the properties of the specific word (Clark & O’Regan, 1999;

Farid & Grainger, 1996; Holmes & O’regan, 1992; O’Regan & Lévy-Schoen, 1987). For

example, in O’Regan and Lévy-Schoen (1987), researchers conducted an isolated word

recognition experiment with words that could be uniquely identified from the first half

(“beginning” words) and those could be uniquely identified from the second half (“end”

words), and found that they had different OVPs, with the OVP of beginning words shifted

leftward and that of end words shifted rightward. Farid and Grainger (1996) found that

morphological structure of the stimuli, rather than reading habits or brain lateralization

constraints, matters for the location of OVP in an experiment comparing a left-to-right

language (French) and a right-to-left language (Arabic). Clark and O’Regan (1999) found

that a word could usually be reliably identified if the two letters nearest the location just

left of the word center, as well as the very first and the very last letters of the word were
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known, suggesting that OVPs could be explained from the viewpoint of orthographic con-

straints. Hyönä, Niemi, and Underwood (1989) manipulated the structure of compound

words in Finnish, and found that the eyes initially moved further into a word when the

informative information was at the end of the word than at the beginning. These findings

are not naturally explained by the account that readers move to the word center for best

quality visual input and that readers always target the word center.

3.2.2. Explanations from a rational perspective

A rational model of reading naturally explains why one letter position can be a better

position to fixate than other letter positions: given the current knowledge of the prob-

ability distribution over all possible word identities as computed from cumulative visual

input and linguistic knowledge, the best letter position is expected to yield visual input

that best help identify the word. As this word identification model incorporates both

visual and linguistic information, we would expect it to predict the following patterns: 1)

overall, the effort needed to identify a word (in terms of gaze duration and refixation rate)

should be a function of initial landing position and yield an overall OVP close to word

center, resulting from visual acuity constraints; 2) overall, the effort needed to identify

high frequency words (in terms of gaze duration and refixation rate) should be lower than

low frequency words, resulting from linguistic knowledge; and 3) for words with certain

properties (we focus on “beginning” words vs. “end” words), the position where gaze du-

ration is minimized should reflect complicated interactions between visual and linguistic

knowledge (i.e., should be toward word beginning for “beginning” words and toward word

end for “end” words).
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Existing rational models of reading face problems in reproducing these effects. The

Mr. Chips model considers eye movements to minimize the expected entropy of the word,

and is able to reproduce the effect that refixation rate is a function of initial landing

position (Legge et al., 2002). However, this model does not have a realistic word identi-

fication model, and could not make predictions about reading times. The policy learned

through RL in Reichle and Laurent (2006) is able to reproduce the effects that involve

visual constraints, but is not expected to predict effects involving linguistic knowledge

and especially the interaction between visual and linguistic factors. Existing instances of

rational models for eye movements in identifying a single word focus on where the eyes

move, and again, do not make predictions about reading times (Duan & Bicknell, 2017,

2020). This only leaves us with one rational model of reading that predicts both reading

time and saccade target selection (Bicknell & Levy, 2010, 2012b). This model is expected

to predict all the within-word behaviors mentioned above. However, it uses a restricted

policy with two hyperparameters, corresponding to the confidence thresholds that readers

refer to when they make eye movement decisions, it is not clear if specific choices of the

hyperparameters alter the predictions.

To test the rational model’s predictions about eye movements at a fine-grained level,

and to overcome potential problems of exploring eye movement policies in a restricted

space, we implement a rational model of eye movements in reading with a policy learned

through RL, and evaluate its behavior by comparing them to humans’ within-word eye

movements. The idea of learning a policy that maximizes word identification efficiency

through RL is inspired by fruitful research that use RL to optimize the strategy to solve

motor control problems (Mnih et al., 2015; Sutton & Barto, 2018). In general, RL can
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solve the problem of deciding which action an agent should take to get the maximum

future reward through its interactions with the environment. Therefore, the RL approach

only makes an explicit assumption about the goal of reading, and does not introduce

extra constraints regarding how actions should be taken at each state. Therefore, RL is

appropriate for our goal of finding an optimal eye movement policy in an unrestricted

policy space.

3.3. General assumptions and problem statement

3.3.1. Word identification as Bayesian inference

We follow the idea that word identification can be modeled in terms of Bayesian belief

updating, in which a prior distribution over possible identities of the text (given by its

language model) is combined with a likelihood term (given by ‘noisy’ visual input at the

position of fixation) to form a posterior distribution over identities of the text. Formalized

with Bayes’ theorem,

p(w|I) ∝ p(w)p(I|w)(3.1)

where the probability of the true identity of the word being w given uncertain visual input

I is calculated by multiplying the language model prior p(w) with the likelihood p(I|w)

of obtaining this visual input from word w, and normalizing.

In general, the prior p(w) represents reader expectations for words conditioned on the

context, but for the present study, we ignore context and use only a word frequency model

for simplicity. The visual likelihood is computed in a way similar to (Bicknell & Levy,

2010): each letter is represented as a 26-dimensional vector with a single element being
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1 and the rest being 0s. Visual input about each letter is accumulated iteratively over

time by sampling from a multivariate Gaussian distribution centered on that letter with

a diagonal covariance matrix Σ = λ−1I, where λ is the reader’s visual acuity for that

letter. Visual acuity depends on the location of the letter relative to the point of fixation,

which is a function of the letter’s eccentricity ε. In our model, we assumed that acuity is

a symmetric, exponential function of eccentricity:

λ(ε) =

∫ ε+.5

ε−.5

1√
2πσ2

exp(− x2

2σ2
)dx(3.2)

with σ = 3.075, the average of two σ values for the asymmetric visual acuity function

(σL = 2.41 for the left visual field, σL = 3.74 for the right visual field) used in Bicknell

and Levy (2010). To scale the quality of visual information, we multiply each acuity λ by

the overall visual input quality Λ, which is a hyperparameter in our simulation.

3.3.2. The word identification problem

We assume that for a human reader (or an agent) that performs word identification,

the task is to move eyes in a way that identifies the word quickly and accurately. In the

language of reinforcement learning, a reader agent interacts with an environment in which

a word is to be identified. At each time step, the reader agent obtains an observation

of the state from the environment, which includes the posterior distribution over words

or some form of it, and decides on an eye movement action to take. The environment

changes when the reader agent acts on it; for example, the posterior distribution changes

after getting a piece of visual input. The reader agent also perceives a reward signal from

the environment, indicating how good or bad the current state is. This reward signal
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encodes both speed and accuracy in some form, as word identification efficiency is usually

evaluated on these two aspects. Considering that human readers do not have access to

the identity of the true word until they stop reading, the virtual reader should not get

accuracy-based reward as well until the end of a trial. The goal of the reader agent is to

maximize its cumulative reward by recognizing the word quickly and accurately before

stopping reading. The reader agent can use a predefined policy or learn its own policy to

achieve this goal.

To make it concrete, we formalize the problem in the way we implement it in this

study as below. Note that there can be other implementations as well. Say we have a

vocabulary with all words in it having the same length l1. We can describe the word

identification setup as a Markov decision process, characterized by (S, A, R), where

• S denotes the set of states s. A state is a 27l-dimension vector, with a l-

dimension one-hot vector indicating the current fixation location, concatenated

with a 26l-dimension vector indicating the probability of each character (26 is

the number of letters in the English alphabet, and we assume all words only

consist of lower-case letters) at each position. Note that this representation is

a summary of the posterior in terms of character probabilities at each position.

We prefer this representation to the posterior over words, because each word

adds to an independent dimension of the posterior, resulting in inefficiency to

1We have all words in the same length for two reasons. One is for the ease of modeling, as a letter-based
visual representation used in this paper yields state vectors of different dimensions for different word
lengths. The other one is that word length has a complex influence on eye movements in reading, and
human readers may not have perfect information about word length (Bicknell & Levy, 2012a). Therefore,
it is recommended to compare words that all have the same length.
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consider relations (e.g. neighbors) among words and increased computational

cost as vocabulary size increases.

• A denotes the set of actions a. Our action space includes l+2 actions, consisting

of l actions to launch a saccade targeting one of the letter positions in the word,

one action to keep fixating the current position, and one action to stop reading

and launch a saccade to the first letter of the next word.

• R denotes the reward function. The reward is -1 for every time step as the trial

continues, and is a weighted log probability of the true word (denoted as p) when

the trial ends (see below for more details about the definition of a ”trial”). That

is,

R(t) =


−1 + w log(p), if trial terminates at time t;

−1, otherwise.

In the end, if a trial ends at time t with the probability of the true word being

p, then the return (i.e. sum of the rewards) of this trial is −t+ w log(p).

The interaction between the reader agent and the environment breaks into episodes,

which naturally corresponds to trials in a psycholinguistic experiment. Each trial is ini-

tialized with a word randomly picked proportional to word frequency in the vocabulary,

and an initial landing position randomly sampled from l positions with equal probabili-

ties. The first fixation lands on the initial landing position, initialized with f1 time steps,

during which time visual inputs are gathered from this initial landing position and the

posterior distribution of word identities is updated. After that, the agent acts according

to its policy. Depending on which action is taken, there are three cases:
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(1) If the agent chooses to launch a saccade targeting one of the l letters of the word,

then the agent is forced to 1) fixate where the agent actually lands for f1 steps

(if this new position is not outside the word) and 2) fixate the current location

for f2 time steps before moving to the new position, where f2 corresponds to the

time needed for the agent to plan and execute a saccade, known as saccade lag

(Rayner, 1998). The agent then lands on this new position, which is drawn from

a normal distribution centered on the target position considering random saccade

error;

(2) If the agent chooses to stop reading, then a similar process happens, except that

the agent launches a saccade that always targets the first letter of the next word;

(3) If the agent chooses to keep fixating the current position, then the agent spends

one step on the current location, gets one visual input sample from the current

location and updates the posterior.

A trial terminates if i) the agent takes the action to stop reading, ii) time elapsed before

taking an action exceeds time limit T (note that a trial can be as long as T + f1 + f2

because of unintentional refixation due to saccade error), or iii) the actual landing position

is outside the word. Since this model considers saccade error and iii) is a condition that

could terminate a trial, a trial may terminate intentionally or unintentionally. Specifically,

a trial can terminate when the agent targets any of the l positions but actually lands on

a position outside of the word, in which case the trial terminates after spending f2 time

steps on the current fixation location. In another case, if the agent chooses to stop reading

but the actual landing position is within the word (including letters and the spaces right
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Table 3.1. Hyperparameters of the gym-wordreading environment.

Notation Definition Experiment setting
l Word length. 7
f1 Minimum required duration of a fixation be-

fore taking any action.
2

f2 Saccade preparation duration. 1
T Maximum steps allowed before taking action. 11

w Weight of log-probability of the true word in
the reward function.

3 (‘speed’) /
10 (‘accuracy’)

f1

f2

word = million
pos = 6

f2

1

million

million

million million

action = keep
(keep fixating
current position)

action = 1
(launch a saccade
targeting position 1)

action = stop
(launch a saccade

targeting position l+2)

million xx

f1 or f2

xx million

or f2

million xx

f1

million

1 2 Fixation
(actual landing position; visual input √)

Target landing position
(visual input ×)

Trial termination

Figure 3.1. An example of the procedure of a trial with true word being
‘million’ and initial landing position set to 6.

before and after the word), then the agent lands on the actual landing position and gets

visual input for f1 time steps before the trial terminates.

We created an OpenAI Gym (Brockman et al., 2016) interface for this word identifi-

cation environment, called gym-wordreading. Table 3.1 presents the hyperparameters of

this environment, and Fig. 3.1 illustrates the procedure of a trial.
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3.4. Model implementation

In this section, we first introduce our implementation of a deep reinforcement learning

model that performs the word identification task and decides when and where to move

eyes. Specifically, the model learns a policy parameterized by a neural network. We then

discuss the role of this implementation under the context of other eye movement control

models.

3.4.0.1. Policy gradient method. As deciding when and where to move the eyes can

be viewed as a motor control problem, we borrow ideas from the field of using reinforce-

ment learning to learn motor control policies (Mnih et al., 2015; Peters & Schaal, 2008).

In general, it is straightforward to learn a policy that maps states directly to actions

without first computing action values. The idea is to parameterize a policy directly, de-

noted as πθ, and the goal is to maximize the expected return J(πθ) = Eτ∼πθ R(τ), where

R(τ) denotes the sum of rewards obtained in a trial with a fixed number of steps, in

which the agent acts according to πθ and generates a trajectory (i.e. a sequence of states

and actions) τ . The policy parameters θ can be optimized by gradient descent, such as

θt+1 = θt+α ∇θJ(πθ)|θt . The advantages of using a policy gradient are multi-folds: First,

the agent can make its policy more greedy over time autonomously, meaning that the

policy can start off stochastic to guarantee exploration, and as learning progresses, the

policy can naturally converge towards a deterministic greedy policy. Also, with contin-

uous policy parameterization, the action probabilities change smoothly as a function of

the learned parameter, avoiding failures due to dramatic change of action probabilities

resulting from an arbitrarily small change of estimated action values in pure action-value

based methods. There are also times when the policy is simpler than the value function.
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Therefore, policy gradient approach is a natural choice for our eye movement control

problem.

We utilized an existing Python package, called Spinning Up (Achiam, 2018), to train

the reinforcement learning model. Specifically, we used its implementation of Proximal

Policy Optimization (PPO). PPO is (roughly speaking) an on-policy, actor-critic method

that learns by getting action from a policy (known as the actor) and performing gradient

descent based on error signal from an estimated value function (known as the critic),

having the advantage of simple to implement and performing at least as well as other policy

gradient methods (for more formal details, see Schulman, Wolski, Dhariwal, Radford, &

Klimov, 2017). Any other reinforcement learning method may serve our purpose as well

as PPO, and we use PPO here just because it is a state-of-the-art reinforcement learning

method, it performs well in other motor control tasks, and an implementation of this

method is readily available.

3.4.0.2. Model architecture. There are several possible ways of parameterizing the

policy into a neural network. A straightforward model architecture is a Multi-Layer

Perception (MLP) neural network, in which the input state passes through several fully-

connected hidden layers. Alternatively, we can use a convolutional neural network (CNN),

which contains convolutional layers and is widely used in image processing. CNN has the

advantage of using much fewer parameters than fully connected MLPs, and being able

to capture features automatically. In this study, we choose to parameterize our model

with a CNN over MLP, because conceptually it is reasonable to represent the visual

representation of a word as an image, instead of representing letters at different positions

as independent, spatially unrelated features.
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The exact architecture, shown schematically in Fig. 3.2, is as follows. We adopt

a structure similar to Kim (2014). We first convert the probability of each character

at each position into a matrix, each row representing a position by the probabilities of

characters as well as the location of current fixation. With l-letter words, this matrix has

a shape of l× 27. Then we treat this matrix as an ‘image’ and perform convolution on it

via linear filters. Since rows represent discrete letter positions, we use filters with ‘width’

equal to the dimension of the position vectors (i.e., 27), and vary the ‘height’ of the filter,

which corresponds to the number of adjacent positions considered jointly. In this study,

the convolutional layer convolves 20 filters each of two heights: 2 and 3, with stride 1 and

same padding, after which a ReLU activation function is used to induce a feature map. A

max-pooling layer follows, where a single number is generated from 2 adjacent positions

with stride 2 from each feature map and thus capture the most important feature locally,

and these numbers are concatenated to form a feature vector. These features are passed

to a fully connected layer with 32 nodes. For the actor, it is followed by a fully connected

softmax layer whose output is the probability distribution over actions. For the critic,

it is followed by a single node that outputs the estimated value of the given state. This

actor-critic object is then trained by PPO to optimize the policy.

3.5. Experiment

3.5.1. Data

Considering that word length influences reading behaviors in a complicated way (Bicknell

& Levy, 2012a) and that words of different lengths have different dimensions in a letter-

based visual representation we use, we handle words of different lengths separately, and
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Figure 3.2. Structure of the actor-critic object using a CNN model.

focus on words with a single word length in this study. We included the 3,000 most

frequent 7-letter words from Google One Billion Word Benchmark (Chelba et al., 2013)

as all possible words in our word identification environment.

3.5.2. Environment settings

In our experiments, we set the environment hyperparameters T to be 11 steps, f1 to be 2

steps, and f2 to be 1 step. These numbers are in arbitrary units and do not quantitative

fit human reading times, where each fixation usually takes 150 – 300 milliseconds. Rather,

they were set to qualitatively demonstrate how such a computational model of reading

works. The reason that these numbers were chosen, if any, was to ensure that a word

could be identified with a satisfactory accuracy (in our setting, the average probability

of true word achieved 80% if word center was fixated through the whole trial) within

the given trial length. The trial length was chosen to balance the sensitivity to model

difference and the preference for a low computation cost.
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For the saccade error function, we assumed the actual landing position to be normally

distributed around the target position with a standard deviation given by a linear function

of the intended saccade size. We used a saccade error function similar to the Mr. Chips

model (Legge et al., 1997), where posactual ∼ N (postarget, 0.3|postarget − poslaunch|).

3.5.3. Training details

We trained agents in this study with 150 epochs. In each epoch, the agent gathers trial

experience by acting in the environment with the current policy, and then updates policy

gradient once based on the experience. Each epoch allowed a maximum of 25,000 steps to

take an action, meaning that the agent learned from at least 2272 trials (if all trials took

the maximum possible 11 actions of keeping fixating the current position) before each

policy updating. We used the default learning rate of the Spinning Up implementation of

PPO. Since we focused on what an RL policy might look like rather than the best possible

performance, we did not tune hyperparameters of the settings.

3.5.4. Evaluation

The trained RL agents after the last epoch were evaluated by performing 5,000 trials of

word identification in the same environment. We evaluated the policy by comparing the

average return of this RL policy against baseline policies, and to what extent this RL

policy yielded human-like eye movement behaviors.

3.5.4.1. Baseline policies. As baselines, we implemented the following policies: ran-

dom policy (Rand), which randomly chooses an action with equal probability; fixate-

center policy (Center), which always moves to word center and keeps fixating until
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one of two conditions is met: 1) the trial reached maximum allowed time steps, or 2)

performed the stop-reading action after T ′ steps, with 1 ≤ T ′ ≤ T + f1 + f2 and best T ′

chosen by grid search in this range; and alpha-beta policy (AB) policy, which compares

the maximum probability of characters at position j, denoted as m(j), to two hyperpa-

rameters α and β: the agent keeps fixating current letter if m(j) ≤ α; otherwise, the agent

first looks leftward and initiates a leftward saccade to the closest position j if m(j) ≤ β,

and then looks rightward and initiates a rightward saccade to the closest position j if

m(j) ≤ α; if m(j) exceeds all those thresholds for all letter positions, the agent chooses

to stop reading (Bicknell & Levy, 2010). The best combination of α and β was chosen by

grid search in [0.3, 0.5, 0.7, 0.8, 0.9, 0.95]× [0.3, 0.5, 0.7, 0.8, 0.9, 0.95].

3.5.4.2. Within-word eye movements: overall effect of initial landing position.

As found in previous research, word recognition time is minimized if readers move their

eyes to a position close to and left of the word center, resulting in a U-shaped curve in

terms of eye movement measures, especially gaze duration and refixation rate (O’Regan,

1992; Rayner, 1998). To see if the policy learned by the RL agent yielded human-like

behaviors, and if the policy took different word properties into consideration, we analyzed

three effects.

Firstly, we examined the overall OVP effects in terms of gaze duration and refixation

rate. This analysis corresponded to a typical analysis for a word identification experiment,

and we expected to find a similar U-shaped gaze duration curve and a similar refixation

rate curve as found in human data.

3.5.4.3. Within-word eye movements: word frequency effect. Secondly, we ex-

amined if word frequency influenced these curves in a human-like manner. Specifically,
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we expected that high frequency words took a shorter time to identify than low frequency

words, whereas the refixation rate to be not significantly different between them. We also

expected that all curves were U-shaped as a function of initial landing position. Although

our vocabulary consisted of the top 3,000 seven-letter words and thus all words should be

considered as high frequency words, we conducted a median split on log frequency and

split words into a high frequency group and a low frequency group. Word frequency was

significantly different for these two groups (high frequency: mean = −4.77, SD = 0.46;

low frequency: mean = −5.70, SD = 0.17; t = 73.33, p < 0.001).

3.5.4.4. Within-word eye movements: interaction between visual and linguis-

tic factors. Lastly, we examined if RL policy rationally adopted different policies for

different words. According to the rational model of reading, readers gather visual infor-

mation rationally and move their eyes to the most uncertain part of a word. Therefore, a

natural prediction is that the position that minimizes reading effort should shift leftward

for words with an informative first half of the word compared to words with an informative

second half of the word. This pattern was observed in human data (O’Regan, 1992).

One possible way to distinguish words with an informative first half versus words with

an informative second half is to see if a word has a unique first half or a unique second half

(O’Regan & Lévy-Schoen, 1987). However, a word can have both (e.g., citizen, pyramid),

and how to treat these words is unclear. Other methods that consider word neighbors

(e.g. ambiguity analysis in Clark & O’Regan, 1999) require additional assumptions about

word identification and thus may involve extra arbitrariness to some extent.

To better capture words that vary in terms of informativeness at different letter posi-

tions, we selected words that were more informative in the first half and that were more
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Table 3.2. Properties of “beginning” and “end” words.

“beginning” words “end” words
Count 150 150
Word frequency (log) -4.84 -5.05
Average ratio 0.71 1.13
Common prefix/suffix -ing; -ed con-; re-
Examples opening; elected; nursing control; bathtub; recruit

informative in the second half based on simulation results. Specifically, we consider a

letter position informative for identifying a word if the posterior has lower entropy after

getting visual samples from this position than from other positions of the word. A word

is considered to have a more informative beginning if the average posterior entropy of the

first half is lower than the second half, which can be captured by a ratio of these two

averaged posterior entropy values. Following this idea, we simulated 30 trials for each

word, each letter position, and each time step ranging from 1 to 10, average the posterior

entropy for each word and each letter position to reduce random noise, and computed

the ratio for each word. We selected words with a ratio lower than 95% of words in the

vocabulary as the set of words with an informative first half (“beginning” words) , and

words with a ratio higher than 95% of words in the vocabulary as the set of words with

an informative second half (“end” words). Properties and examples of these words are

shown in Table. 3.2.

3.6. Results

We report results from two simulations with all settings and hyperparameters set the

same except for the weight of accuracy in reward function (i.e. w). We set w to be 3

to yield a ‘speed’ setting, in which fast identification is encouraged more than accurate
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identification, and set w to be 10 to yield an ‘accuracy’ setting, in which accurate iden-

tification is encouraged more than speedy identification. This allows us to see if the RL

agent can adjust its policy accordingly, and to see if the policy it learns show robustness

across different reward settings.

3.6.1. Reward

First, we ensured that the RL agent learned a stable policy in both a ‘speed’ setting and

an ‘accuracy’ setting, as illustrated by the temporal evolution of reward during learning

in Fig. 3.3.

Fig. 3.4 shows the average reward, average gaze duration, and average probability of

the true word of RL policies and other baseline policies on the evaluation trials. We plot

the 95% confidence interval of the average reward of all these trials, calculated using boot-

strap resampling with 10,000 replicates. As shown in these plots, the RL policy yielded

the highest reward resulting from the shortest average gaze duration and the highest av-

erage probability of the true word in both the ‘speed’ setting and the ‘accuracy’ setting,

indicating that an optimal policy exists beyond expert knowledge of eye movements of

reading.

3.6.2. Overall effect of initial landing position

Given that the RL agent learned a policy that outperformed other heuristic policies, we

further examined what the policy looked like. In this section, we focused on the effect of

initial landing position found in human reading experiments, and qualitatively evaluated

if the RL policy reproduced these effects.
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Figure 3.3. Average reward per epoch of training with a CNN model.

As shown in Fig. 3.5, both the gaze duration curve and the refixation rate curve were

U-shaped, similar to human reading behaviors observed in human data. Consistent with

the intuition that the ‘accuracy’ setting weighed accuracy more than speed, the learned

RL policy spent a longer time, and made more refixations than in the ‘speed’ setting.

3.6.3. Word frequency effect

Fig. 3.6 shows gaze durations and refixation rates for high frequency and low frequency

words. Similar to human data in Fig. 3.7 (O’Regan, 1992), we observed frequency effects

where high frequency words were read faster than low frequency words, and also effects of



79

●

●

●

●

●

●

●

●

−13.66

−10.91

−10.13

−10.90

●

●

●

●

●

●

●

●

−23.73

−15.24
−16.02

−14.38

'speed': w=3 'accuracy': w=10

Rand Center AB RL Rand Center AB RL

−24

−22

−20

−18

−16

−14

−13

−12

−11

−10

A
ve

ra
ge

 R
ew

ar
d

●

●
●

●

11.87

9.29 9.42
9.12

●

●

● ●11.89

14.00

11.84 11.78

Rand Center AB RL Rand Center AB RL

9

10

11

12

13

14

A
ve

ra
ge

 g
az

e 
du

ra
tio

n

●

●
●

●

0.58
0.56 0.57

0.60
●

●

●

●

0.58

0.77

0.73

0.79

Rand Center AB RL Rand Center AB RL

0.55

0.60

0.65

0.70

0.75

0.80

Policy

A
ve

ra
ge

 p
ro

ba
bi

lit
y 

of
 tr

ue
 w

or
d

Figure 3.4. Average evaluation reward of different policies in a ‘speed’ setting.

initial landing position where gaze duration curves and refixation curves were U-shaped for

both types of words. We did not observe a difference on the refixate rate curve regarding

word frequency, which was also the pattern in human reading data. In addition, we

observed that for any pair of letters with the same distance to word center, gaze duration

and refixation rate were lower for the ones to the left of the word center, consistent with

the human reading behavior that the overall OVP is slightly to the left of center, rather

than exactly at word center.
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landing position in ”speed” and ”accuracy” settings.

3.6.4. Interaction between visual and linguistic factors

Fig. 3.8 shows gaze duration and refixation rate for “beginning” words and “end” words.

Note that “beginning” words were more frequent than “end” words (t = 2.78, p = 0.006),

and to better align with human data shown in Fig. 3.9, which were collected from a

controlled experiment where the frequency of these two groups of words was matched, we

removed frequency effects by running regression models with word frequency being the

predictor and eye movement measures being the response.

We observed that RL policy produced a human-like pattern, with the optimal viewing

position shifted leftward for “beginning” words while shifted rightward for “end” words.
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Figure 3.6. Word frequency effect as a function of initial landing position
in terms of gaze duration and refixation rate in ”speed” and ”accuracy”
settings.

This pattern was most obvious in terms of gaze duration. Although human reading ex-

periments only reported effects on gaze duration, our simulation suggested that refixation

rate in the ‘accuracy’ setting may also show an effect. This pattern was interesting be-

cause it may suggest that more carefully planned strategy may be used if recognition

accuracy was weighed more than speed. Future studies could be conducted to collect eye

movement data from human readers and test this prediction.
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3.7. Discussion

This study presented the first rational model of reading that used deep reinforcement

learning to learn a policy that maximized word identification efficiency and tested rational

models’ predictions at the level of within-word eye movement behaviors. We observed that

the RL policy robustly outperformed heuristic policies by achieving higher confidence in

a shorter time, indicating that previous heuristic policies were indeed restricted. We also

observed that the rational model with an RL policy reproduced human-like behaviors,

as evidenced in overall effects of initial landing position, word frequency effects, and in

particular different gaze duration patterns for “beginning” and “end” words resulted from
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Figure 3.8. Gaze duration and refixation of “beginning” vs. “end” words
in ”speed” and ”accuracy” settings.

the integration of visual and linguistic factors, suggesting that rational model of reading

were able to explain eye movements at a fine-grained level. These patterns held in both

speed and accuracy settings, indicating that our results were invariant to different choices

of hyperparameters.

These findings suggest that a rational model of reading provides natural explanations

for eye movement decisions regarding when and where to fixate during word identification.

Such a framework has advantages in explaining eye movements on two aspects: one is

regarding the information based on which eye movement decisions are made, and one is

regarding the mechanism of making eye movement decisions. Regarding the information
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Figure 3.9. Gaze duration for “beginning” and “end” words in human data.
Plots are adapted from O’Regan, 1992, Figure 20.3. Note that the data
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source, the posterior distribution yielded from combinations of visual and linguistic infor-

mation turns out to be a useful presentation that leads to reasonable behaviors, suggesting

that information from various sources are combined rationally during word identification.

This finding echoes previous studies in other eye movement phenomena (Bicknell & Levy,

2010; Duan & Bicknell, 2017, 2020). Regarding the mechanism of eye movement deci-

sion making, a policy learned by an RL model that aims to optimize word identification

efficiency yields the highest reward and produces human-like eye movement behaviors,
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suggesting that policies better than fixating word center exist, and humans are likely to

adopt similar policies to optimize word identification efficiency.

The RL model learns to decide when to stop reading, showing shorter gaze duration in

a ‘speed’ setting than in an ‘accuracy’ setting. It also learns to decide where to fixate and

targets positions that yield best word identification performance. Besides its implication

that humans make eye movement decision rationally, the RL model itself is also a new

application of reinforcement learning that proves to be useful. As shown in this study,

deep reinforcement learning can empower the investigation of mechanisms of cognitive

processes.

There are also many limitations in this study. Firstly, since human data were collected

in an aggregated manner and the OVP effects were coarsely described in previous liter-

ature, we did not have the chance to compare more detailed behaviors of the RL policy

and human eye movement behaviors. This limited the explanation of a rational model

of reading to a relatively coarse level. This could be solved by collecting eye movement

data from human participants as they perform a well-designed isolated word identification

task, and this would allow more fine-grained comparisons. Secondly, the word reading

environment incorporated arbitrary settings, including but not limited to the procedure

of eye movements in word identification, hyperparametrs, and saccade errors. It is worth

investigating into finding a setting that aligns with human data better (e.g. requiring

similar time steps as humans to identify words), such that it becomes possible to look

into what components of agent-environment interactions are critical for explaining human

behaviors. Lastly, it may not be clear where the current results generalize. Note that we

use all words in the vocabulary in both training and evaluation. From the perspective
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of machine learning, this may implicate over-fitting. However, this is how humans read

– the distribution of humans’ language knowledge is expected to be exactly the same as

what they may encounter, and we do not expect humans’ language knowledge to work on

language materials they have never seen before (at least at the level of identifying a single

word). Regarding using only seven-letter words, we expect all the results of this study

to hold in other word lengths as well if different word lengths are treated separately. It

would be even more ideal if all word lengths are handled altogether, before which a model

of representation that generalizes across word lengths should be built.

This study opens new possibilities for future research. From the perspective of un-

derstanding human eye movements, this study provides a framework that directly models

eye movement policy from word identification, allowing future research to examine each

component of this model in a way similar to examining human cognitive processes but

out of the black box. From the perspective of applying deep reinforcement learning to

novel situations, this study extends the scope into psycholinguistics, which will potentially

benefit from the adoption of reinforcement learning methods, and also serve as a test-bed

for their generalization ability.
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CHAPTER 4

A Rational Model of Word Skipping in Reading: Ideal

Integration of Visual and Linguistic Information1

4.1. Introduction

To achieve comprehension in reading, readers move their eyes across the text to obtain

the information needed to identify the words. In the past decades, research on eye move-

ments in reading has provided ample evidence that word identification can be seen as the

primary driver of eye movements. The reasoning behind this conclusion, however, is based

on relatively coarse observations, such as demonstrating that eye movements are sensitive

to aggregate variables that are important in word identification (e.g., word length and

frequency). Although such a coarse linking hypothesis between word identification and

eye movements successfully predicts several reading behaviors, a model of reading that

connects eye movements to ongoing language processing in a deeper way could lead to

more precise predictions, improved data analysis, and an overall fuller utilization of the

eye movement record to advance theories of sentence processing.

One promising model of this type comes from the perspective of rational analysis.

The idea is to consider the reading process as one that combines information from various

1The contents of this chapter were previously published as Duan, Y., & Bicknell, K. (2020). A rational
model of word skipping in reading: ideal integration of visual and linguistic information. Topics in
Cognitive Science, 12(1), 387-401. doi:10.1111/tops.12485.
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sources to identify words and then makes eye movement decisions to maximize identifica-

tion efficiency (Bicknell & Levy, 2010, 2012b; Legge et al., 1997, 2002). In these rational

models of reading, text identification process is modeled using Bayesian inference that

combines two sources of information: (1) probabilistic knowledge of the structure of the

language, serving as the prior, and (2) uncertain visual evidence, serving as the likelihood.

Given a prior and a particular set of visual evidence, probabilistic inference yields a pos-

terior distribution on the text, which specifies the probability of each possible identity

of the text. In these models, eye movements are performed to obtain particular pieces

of visual evidence. The most efficient, rational reading behavior should use the current

posterior distribution on the text identity to determine the most useful time and place to

move the eyes next. Therefore, any eye movement behaviors explained by this model of

reading can be seen as naturally arising from one source: the rational gathering of visual

evidence for text identification.

In contrast, the dominant models of eye movement control in reading tend to use

heuristic linking hypothesis between text identification and eye movements (e.g., E-Z Reader,

Reichle et al., 2009; and SWIFT, Engbert et al., 2005). For example, in E-Z Reader, eye

movements are driven by a word identification process that is represented simply with

three discrete states (not identified; partially identified; fully identified). The transitions

between these states depend on a certain amount of time having passed, which depends

on a few coarse visual and linguistic variables of the word. The timing of the two transi-

tions between the three states depends on a stochastic function of two linguistic variables,

the word’s frequency in the language and its predictability in context, and one visual

variable, the average distance from each of the word’s letters to the point of fixation.
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Thus, in these models, there should be some effects of each of these three variables on

word identification speed. The effects of visual information are that when the eyes are

closer to a word, it should be identified faster, and also that if a word is longer, it should

be identified more slowly. Similarly, if a word is more frequent in the language or more

predictable in context, it should be identified faster.

There are situations, however, where word identification may be affected by more fine-

grained information than these three coarse variables. Consider situations where visual

information about only the beginning of the word is enough for identification, e.g., seeing

the initial letters ‘xyl’ of the word ‘xylophone’ (Hyönä et al., 1989). Similarly, in certain

linguistic contexts, a reader only needs to see a few of the initial letters of a word to

be confident in its identification, such as in ‘The children went outside to pl. . . ’. Do

readers in fact combine more fine-grained information than simply word frequency and

word length in the way as predicted by rational models of reading?

As illustrated in the preceding examples, an ideal testbed for these predictions of a

rational model is when a word is identifiable with visual information about only part of

the word. In natural reading, this situation occurs often in the eye movement behavior of

skipping, when a reader moves their eyes past a word without ever having directly fixated

it. Intentionally skipping a word is generally modeled as a case in which the reader has

identified the word (possibly incorrectly) while still looking at a prior word, and thus

makes a saccade that takes the eyes past the word, skipping over it. Since this (implicit)

decision about whether to skip the word is made when the reader is fixating a prior word,

this is a case when the reader has high quality visual information about only some of

the word’s initial letters but does not yet have high quality visual information about the
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whole word. The amount of visual information the reader has at this time is a function of

the launch site, the distance from the fixation position to the beginning of the word. In

such a situation, both the rational model and the heuristic model predict that how likely

a reader is to skip a word should be a function of launch site (amount of visual input),

and also of linguistic knowledge (which words are common, and which words are likely

in this position). The rational model alone additionally predicts that readers’ likelihood

of skipping the word will vary depending on the particular visual information obtained,

and whether that information distinguishes it strongly from its (likely) visual neighbors.

Therefore, skipping should be observed to be a complex function of the launch site, the

particular word, and linguistic knowledge, in contrast to the heuristic model’s predictions

of skipping as well-described by coarse visual and linguistic information about the whole

word.

Previous empirical research finds that readers’ likelihood of skipping a word increases

with short word length, close launch sites to the word, high word frequency, and high

contextual predictability (Rayner, 1998). Regarding how different sources of information

may interact in skipping, studies of skipping short words and especially the word the

suggest that visual information and word frequency information trump information from

the sentence context (Angele & Rayner, 2013; Angele, Laishley, Rayner, & Liversedge,

2014). In particular, Angele and Rayner (2013) manipulate the previews of three-letter

verbs being either the verb or the article the during sentence reading. They use the

gaze-contingent boundary paradigm, in which a preview is replaced by the target verb

when the reader’s eyes cross an invisible boundary from the left and directly fixate the

target. Even though the article the is syntactically illegal in the sentence context, the
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skipping rate is high with this preview, suggesting that word skipping is mainly influenced

by parafoveal processing, and that the skipping of the is not strongly influenced by the

context. Angele et al. (2014) further extends this finding to other three-letter words, with

a similar manipulation where the preview mismatches the target word in their syntactic

roles in the context. Results show that readers skip the preview of high-frequency words

even when they are syntactically illegal in the context, suggesting that the skipping of

short words relies on the frequency of the upcoming word more than the fit with the

sentence.

Despite these experimental findings suggesting that contextual predictability is not

integrated with other information sources, it is still an open question the extent to which

readers integrate visual and other types of linguistic constraint (such as word frequency

information). Further, this evidence about contextual constraint rests only on these two

experiments, which use a relatively small amount and variety of language materials tested

and controlled against. The fine-grained predictions of a rational model may be better

tested with a set of eye movement decisions that happen in natural reading and that have

wide variation in visual and linguistic information available to the reader. The goal of the

current paper is to directly test these fine-grained predictions using word skipping, and to

gain insights into how readers combine these different sources of information in making

skipping decisions.
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4.2. Related work

4.2.1. Empirical findings about skipping

At the aggregate level, the effects of visual and linguistic variables on skipping are very

robust. Word length is considered to play a more important role than any other factors,

as found in a meta-analysis showing that word length explained more variance than word

frequency and predictability in regression models predicting skipping rate (Brysbaert &

Vitu, 1998). The effect that close launch sites increase skipping rates is also strong and

robust (Brysbaert & Vitu, 1998).

As for linguistic variables, there is abundant experimental evidence that skipping rate

increases as word frequency increases (Angele et al., 2014; Rayner et al., 1996), and

that high predictability leads to high skipping rate (Balota et al., 1985; Rayner et al.,

2011). Predictability is usually measured as cloze probability, varying across conditions

either with different sentential frames or target words (Balota et al., 1985; Rayner et al.,

2011). The effects hold in corpus analysis as well, as Luke and Christianson (2016) find

that high target predictability leads to more word skipping for both content and function

words. Kliegl et al. (2004) also find significant effect of predictability, word length, and

word frequency on skipping rate using regression analyses on Potsdam Sentence Corpus,

though they do not include any interactions among these factors.

Several studies have looked into the interactions between visual and linguistic factors at

a coarse level. One approach is to analyze linguistic effects on data split by launch sites in

post-hoc analysis. For example, Rayner et al. (1996) observe reliable frequency effects on

skipping rate at near launch sites (> −5) but not at far launch sites, and White, Rayner,
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and Liversedge (2005) find a significant interaction between predictability and word length

preview overall, which diminishes to a non-effect for far launch sites (near launch sites are

defined as those ≥ −3, while far launch sites are those ≤ −4). Another approach to study

the interaction of visual and linguistic information is to manipulate parafoveal preview.

A preview of the definite article the increases readers’ skipping rate, even when syntactic

constraints do not allow for articles to occur in that position (Angele & Rayner, 2013;

Angele et al., 2014). Skipping rates are higher for the preview of a highly predictable word

or its visually similar nonword counterpart than the preview of a low-predictability word

(Balota et al., 1985), and for the preview of a predictable word than for a visually similar

nonword (Drieghe, Rayner, & Pollatsek, 2005). Staub and Goddard (2019) observe that

frequency effects on skipping rate are maintained with both valid and invalid previews, but

predictability influences skipping only with valid preview. Additionally, English readers

only benefit from the preview of a semantically similar neighbor in a highly-constraining

context but not in a moderate-constraining context (Schotter, Lee, Reiderman, & Rayner,

2015). More recently, Alhama, Siegelman, Frost, and Armstrong (2019) computed the

amount of information available for word identification at different fixation positions by

applying a linear filter around the fixation. Using frequent seven-letter words in both

English and Hebrew, they find that some words are more readily identified at atypical

fixation locations, and readers are sensitive to this information during word recognition.

In sum, previous research has identified visual and linguistic factors that influence

skipping by conducting reading experiments and corpus studies. There is also evidence for

coarse interactions between aggregate visual and linguistic factors, such as demonstrating

that frequency effects only exist if the launch site is close enough to see the word well.
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Additionally, these results are also constrained to a small set of well-controlled language

materials. A systematic analysis with skipping on a variety of words in a variety of

contexts with a variety of launch sites would help gain insights into how visual and

linguistic variables interact to identify a word before fixating or skipping it at a fine-

grained level.

4.2.2. Other instances of rational models of reading

Previous instances of rational models of reading have provided explanations for several

eye movement phenomena. For example, they explain why the initial fixation tends to

land near word center and is affected by the launch distance (Legge et al., 2002), why

readers often make regressions to previous words (Bicknell & Levy, 2010), and why high-

frequency and low-surprisal words yield lower reading difficulty than low-frequency and

high-surprisal words (Bicknell & Levy, 2012b). In the field of single word identification,

(Duan & Bicknell, 2017) implemented a rational model of refixations, and found that

readers rationally make refixations to seek visual information from parts of the word

about which the readers are uncertain.

The rational model of skipping presented in this paper has a different focus than

previous models. Instead of setting the goal to be identifying a whole sentence, the

rational model of skipping here focuses on identifying a single word before directly fixating

it. In previous models, the computational cost is high due to recomputing posterior beliefs

about an entire sentence after each new piece of visual evidence. The model of skipping

is computationally simple, enabling the incorporation of sophisticated models of language

knowledge and visual evidence.
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4.3. Rational model of skipping

4.3.1. Word identification as Bayesian inference

In our rational model of skipping, word identification uses Bayesian inference, in which

a prior distribution over possible identities of the word given by the language model is

combined with a likelihood term given by ‘noisy’ visual input conditional on the fixation

position to form a posterior distribution over the identity of the word. Formalized with

Bayes’ theorem,

p(w|I) ∝ p(w)p(I|w)(4.1)

where the probability of the true identity of the word being w given uncertain visual input

I is calculated by multiplying the language model prior p(w) with the likelihood p(I|w) of

obtaining this visual input from word w, and normalizing. Since the shape of the posterior

distribution depends on the probability of each word relative to probabilities of other words

in the vocabulary, it contains information about how well a word is distinguished from its

neighbors.

In general, the prior p(w) represents reader expectations for the next word, and for

the present paper, we compare two representations of the prior: a word unigram model

(i.e., using word frequency information), which ignores any context information, and a

5-gram model, which conditions on the previous four words of context. The likelihood

p(I|w) represents how likely a piece of visual input is from a word w. For the present

paper, we assume that all visual input is obtained only from the final fixation position

prior to either fixating the word or skipping it (i.e., the launch site). The visual input
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obtained about a word consists of independent visual input obtained from each letter in

it. Each letter is represented as a one-hot 52-dimensional vector (distinguishing 26 lower-

and upper-case letters), with a single element being 1 and the rest being 0. Visual input

about each letter is accumulated iteratively over time by sampling from a multivariate

Gaussian distribution centered on that letter with a diagonal covariance matrix Σ = λ−1I,

where λ is the reader’s visual acuity for that letter. Visual acuity depends on the location

of the letter in relation to the point of fixation, or eccentricity, which we denote ε. Similar

to Bicknell and Levy (2010), we assume that acuity is a symmetric, exponential function

of eccentricity:

λ(ε) =

∫ ε+.5

ε−.5

1√
2πσ2

exp(− x2

2σ2
)dx(4.2)

with σ = 3.075, the average of two σ values for the asymmetric visual acuity function

(σL = 2.41 for the left visual field, σL = 3.74 for the right visual field) used in Bicknell

and Levy (2010). In this paper, we take the scale of σ, the effective width of the visual

field, as a free parameter, and experiment with a set of σ scales. In addition, we introduce

another free parameter Λ to scale the overall quality of visual information by multiplying

it with each acuity λ (see the Experiment section below).

4.3.2. Single word belief updating

Given visual information and linguistic expectations, we may thus compute a posterior

distribution over possible identities of the word. Since visual information arrives over time,

this is a Bayesian belief updating process, where beliefs are updated as each new piece

of visual information arrives. In the single word domain we study here, this Bayesian
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belief updating process turns out to be relatively computationally simple, and can be

implemented as sampling from a multidimensional Gaussian distribution. Say we have

a vocabulary of size v, where each word has dimensionality d (here d = 52× number of

characters in the word), and we denote y1, y2, ..., yv as the vector representations of all

the words in the vocabulary. We can represent the current posterior over words at time

step t by a (v − 1)-dimensional log-odds vector x(t), where each element x
(t)
i represents

the log-odds of yi relative to the final word yv. Working with beliefs in this format means

that Bayesian inference is just additive in log-odds (no renormalization):

(4.3)

x
(t)
i = log

p(wi|I(0,...,t))
p(wv|I(0,...,t))

= log
p(I(t)|wi)p(wi|I(0,...,t−1))
p(I(t)|wv)p(wv|I(0,...,t−1))

= log
p(I(t)|wi)
p(I(t)|wv)

+ log
p(wi|I(0,...,t−1))
p(wv|I(0,...,t−1))

= ∆x
(t)
i + x

(t−1)
i

That is, the log-odds posterior at time step t equals the log-odds posterior at time

step t − 1 (which serves as the prior at time step t) plus the log-odds likelihood. Thus,

in an iterative belief-updating context, the log-odds vector begins at a value set by the

prior, here the language model, x
(0)
i = log p(wi)− log p(wv). Then, as each piece of visual

information I(t) arrives, updating beliefs is as simple as adding to x(t−1) the likelihood

log-odds vector for this new piece of information ∆x(t), where each element ∆x
(t)
i gives

the likelihood log-odds for that word relative to the final word wv. For a given true

word, vocabulary, and eccentricity, the density function for the likelihood log-odds vector
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∆x(t) is a (v − 1)-dimensional multivariate normal distribution, as each element ∆xi

is an affine transformation of I, which is itself a multivariate Gaussian. Specifically,

following Norris (2006) and Bicknell and Levy (2010), I is represented as a vector with

dimensionality d, drawn from a multivariate normal distribution with a mean equal to the

true word yT , denoted as N (yT ,Σ). The co-variance matrix Σ is a diagonal matrix that

represents the noisiness of visual input, and the variance of each component is inversely

proportional to the processing rate proportion at that letter’s eccentricity from fixation.

This representation allows the following transformation (Eq 4.4).

(4.4)

∆xi = log p(I|wi)− log p(I|wv)

= log p(I|N (yi,Σ))− log p(I|N (yv,Σ))

= [−1

2
(I − yi)

TΣ−1(I − yi)]− [−1

2
(I − yv)

TΣ−1(I − yv)]

=
yTv Σ−1yv − yTi Σ−1yi

2
+ (yi − yv)

TΣ−1I

This equation states that ∆x can be computed as an affine transformation of I. Since

the distribution of I is multivariate normal, the distribution of ∆x is thus also multivariate

normal. As a result, the belief-updating process can be implemented as a random walk,

where each step is a draw from this multivariate normal distribution.

4.4. Experiment

To test whether readers display signatures of optimal integration across these con-

texts, we build a computational implementation of an ideal-integration model predicting
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identification confidence for each skipping decision. We show that these model predic-

tions explain significant variance in human skipping rates when added to a strong baseline

model.

4.4.1. Baseline model

4.4.1.1. Data. The English part of the Dundee corpus contains eye movement records

from 10 native English-speaking participants as they read through newspaper editorials

(see Kennedy & Pynte, 2005, for further details). We included 122,230 observations from

the Dundee corpus if they were: 1) a word skipped on first pass (coded as a 1) or a

word fixated on first pass (coded as a 0); 2) not adjacent to any blink; and 3) not the

first or last fixation on a line. Further, the fixated/skipped word should not 1) contain

any non-alphabetical character or be adjacent to punctuation, or 2) follow a word that

was skipped or refixated. We excluded observations with far launch sites and long word

lengths to ensure enough observations on every level of variations. In the final data,

launch sites ranged between [-10, -1], with more than 1000 observations from each launch

site, and word length ranged between [1, 8], with the skipping rate being higher than 9%

for each word length. The overall skipping rate was 53.9%, resulting from the generally

high skipping rate of Dundee corpus, which was over 40% (Demberg & Keller, 2008), and

our criterion of requiring the previous word to be fixated, leading to a skipping rate even

higher.

4.4.1.2. Model. We analyzed first-pass skipping in the Dundee corpus with a general-

ized additive mixed-effects regression model (GAMM) predicting skipping from a wide

range of variables previously shown to influence skipping, including word length, launch
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site, word frequency, surprisal, and contextual constraint. We estimated word frequency

(log unigram probability) and 5-gram surprisal (log 5-gram probability) with n-gram

models (Goodkind & Bicknell, 2018) trained on the Google One Billion Word Bench-

mark (Chelba et al., 2013), and we measured contextual constraint as the entropy of the

5-gram probability distribution of words in a vocabulary of 20,001 words. We defined

the vocabulary to include all words that were in both the Dundee corpus and our lan-

guage modeling corpus, plus words with frequencies above a cutoff chosen such that the

resulting total vocabulary would have about 20,000 words. We also included terms for

the previous word’s properties such as word length and frequency, and included random

intercepts by participants. Crucially, this GAMM allowed for non-linear effects of each

of these variables, providing a strong baseline. Table 4.1 shows all the fixed effects in the

baseline model.

4.4.2. Rational model

4.4.2.1. Simulation. For each observation in the dataset, we simulated 50 trials using

the rational model of skipping for each parametrization of the model. In each trial, a piece

of visual information from the launch site is sampled and combined with the linguistic

information to generate a posterior distribution of possible identities of the word. As

described above, the visual information in this model has two parameters: overall visual

input quality Λ and the width of acuity function σ. We used fifteen sets of parameter pairs

for the models; these parameters were chosen to be values that spanned a wide part of the

parameter space while also respecting the trade-off between width of the acuity function
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and its overall quality.2 The linguistic information (prior) in this model is given by either

the word frequency (unigram) or 5-gram language models, as used in our baseline model.

4.4.2.2. Analysis. From each trial, we extract the entropy of the posterior distribution

(postH) and then calculate the average of postH from the 50 trials for each observation

(for each model parametrization). For each parametrization, we add this average postH

to our baseline model as a linear predictor. If human readers extract visual and linguistic

information in a rational manner, we predict postH to show a significant effect predicting

human skipping, even in a strong baseline model, such that skipping is more likely when

the posterior entropy is low.

4.5. Results

4.5.1. Baseline model

GAMM results of the baseline model are summarized in Table 4.1. The results con-

firm previous findings that word length, launch site, frequency, surprisal, and contextual

constraint significantly influenced human skipping. Moreover, this baseline model cap-

tures non-linear interactions among these predictors, indicating that different sources of

information interactively guide skipping at an aggregated level.

4.5.2. Rational model

The partial effects of postH computed from the GAMMs are visualized in Fig. 4.1 (fre-

quency prior) and Fig. 4.2 (5-gram prior), after controlling for all variables in the baseline

2If the function is very wide and high quality, the model has too much information about the whole word,
whereas if narrow and low quality, the model has almost no information.
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Table 4.1. Generalized additive mixed-effects regression model results of
the baseline model (note that random slopes for these fixed effects were
not included in the model; the model included a random intercept over
participants). The GAMM was fitted by REML, and p-values were reported
using summary.gam function in mgcv package (Wood, 2011).

χ2 p-value
word length 6026.25 < 2× 10−16∗∗∗

launch site 9123.73 < 2× 10−16∗∗∗

frequency 527.94 < 2× 10−16∗∗∗

surprisal (5-gram) 38.40 1.01× 10−6∗∗∗

context entropy 71.16 8.28× 10−11∗∗∗

word length × frequency 89.06 7.73× 10−16∗∗∗

launch × frequency 36.09 2.85× 10−5∗∗∗

launch × surprisal 29.39 1.13× 10−4∗∗∗

launch × entropy 66.82 2.24× 10−11∗∗∗

word length (word n− 1) 828.66 < 2× 10−16∗∗∗

frequency (word n− 1) 54.11 1.62× 10−9∗∗∗

5-gram (word n− 1) 127.22 < 2× 10−16∗∗∗

context entropy (word n− 1) 31.68 5.05× 10−5∗∗∗

word length × fre-
quency (word n− 1)

84.69 1.73× 10−14∗∗∗

model and additionally including a random slope of postH by participants. The signif-

icance of postH when added to the baseline model is reported in Table 4.2. For postH

computed from rational models with a frequency prior, the effects are significant in the

predicted direction: high postH indicates high uncertainty about the word’s identity and

is associated with lower skipping rates; these effects are robust to parameter choice and

are significant for all parametrizations tested. For postH from rational models with a

5-gram prior, the effects are generally not significant, though they do all trend in the

same direction and show the pattern that skipping rates increase as the uncertainty over

the word’s identity increases, opposite to the predicted direction.
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Table 4.2. Significance of averaged entropy of a rational model’s posterior
distribution when added to the baseline model.

Prior: Frequency Prior: 5-gram
(σ,Λ) z-value p-value z-value p-value
(1,5) -2.99 2.78× 10−3∗∗ 1.23 0.22
(1,15) -2.51 0.012∗ 1.43 0.15
(1,30) -2.07 0.039∗ 2.27 0.024∗

(2,5) -4.49 7.26× 10−6∗∗∗ 1.15 0.25
(2,15) -4.22 2.4× 10−5∗∗∗ 1.67 0.095.

(2,30) -2.75 6.02× 10−3∗∗ 1.96 0.05.

(3,5) -5.76 8.32× 10−9∗∗∗ 1.23 0.22
(3,15) -4.92 8.75× 10−7∗∗∗ 1.56 0.12
(3,30) -3.88 1.03× 10−4∗∗∗ 1.04 0.30
(4,5) -5.98 2.27× 10−9∗∗∗ 1.16 0.25
(4,15) -4.22 2.50× 10−5∗∗∗ 2.15 0.032∗

(4,30) -4.04 5.36× 10−5∗∗∗ 1.43 0.15
(5,5) -5.58 2.37× 10−8∗∗∗ 1.14 0.26
(5,15) -4.81 1.55× 10−6∗∗∗ 1.78 0.076.

(5,30) -3.01 2.65× 10−3∗∗ 2.28 0.023∗
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Figure 4.1. Partial effect of postH with a frequency prior in predicting skip-
ping rate.
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Figure 4.2. Partial effect of postH with a 5-gram prior in predicting skipping rate.

4.6. Discussion

In this paper, we implemented a computational model of skipping that used Bayesian

inference to combine visual and linguistic information. We then extracted the entropy of

the posterior distribution as a measure of readers’ confidence about word identification,

and tested whether this measure improved the predictive power of a strong baseline model

incorporating aggregate visual and linguistic factors known to influence skipping. Results

showed that this postH measure had significant additional effect predicting skipping when

extracted from rational models with a frequency prior, but generally not when extracted

from rational models with a 5-gram prior. The direction of the effect of postH from models

with a frequency prior is consistent with the prediction that low confidence about word

identification leads to decreased skipping rate, while the trend of the effect of postH from

models with a 5-gram prior is in an opposite direction.
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These findings generally provide positive evidence for the rational model’s prediction

that readers’ likelihood of skipping vary depending on the particular visual information

obtained, and whether that information distinguishes it strongly from its likely visual

neighbors according to linguistic knowledge. The predictor, postH, is computed from the

posterior distribution of a Bayesian inference model with partial visual information about

the word, and therefore captures how likely the word is differentiated from its neighbors

in the vocabulary. If the true word is much more likely than its visually-similar neighbors,

the postH should be low, while if the true word and its neighbors have similar probabilities,

the postH should be high. Such a measure of reader’s confidence about word identification

is dynamic and hard to capture in factorial experiments, but can be approached through

computational simulation. Its significant effect cannot be captured by heuristic models in

principle, since postH is assumed to utilize information about how particular words relate

to their neighbors regarding the specific visual information obtained about parts of the

word.

The observation that postH from a frequency prior better predicts skipping than the

5-gram prior appears to be problematic for a fully rational model of skipping, however:

a reader that maximizes usage of all the information available should be better predicted

by a model with a prior that conditions on the linguistic context rather than one with

an acontextual frequency prior. Instead, this pattern seems consistent with previous

findings on the skipping of the, which relies on visual and frequency information more

than structural information (Angele et al., 2014). This pattern is also consistent with

the finding that frequency effects but not predictability effects on skipping survive bad
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parafoveal visual input, which may be explained by a different time course of frequency

and contextual information in making eye movement decisions (Staub & Goddard, 2019).

One alternative possible reason for findings such as ours is that skipping decisions

may be made without full knowledge of the context, leading to a poor fit to human data

from simulations using a contextual 5-gram prior. Specifically, since saccade programming

takes a relatively long time relative to fixation duration and identification/processing of a

fixated word continues during this lag, it is plausible that many or most skipping decisions

about word n may need to be made before the previous word n− 1 is fully identified and

integrated into the context. In spite of this issue to be further examined, we find that

the entropy of a posterior distribution from a frequency prior improves prediction of

skipping with average variables, suggesting a complex combination of information sources

as predicted by rational models of reading.
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CHAPTER 5

Inferring Sentence Comprehension from Eye Movements in

Reading

5.1. Introduction

In the past decades, the study of sentence processing has gained fruitful results through

the study of humans’ eye movements as they read sentences. As has been demonstrated

in many studies, there is a tight link between eye movements and cognitive processes in

reading, allowing researchers to infer moment-to-moment language processing from eye

movements ((Just & Carpenter, 1980; Morrison, 1984; Rayner, 1998; Thibadeau, Just, &

Carpenter, 1982), among many others). For example, readers spend more time looking

at low-frequency words than high-frequency words, suggesting that eye movements are

sensitive to word frequency information (Rayner, 1998). In contrast to the abundant

studies regarding the relationship between eye movements and cognitive effort involved

in sentence processing, most reading studies remain agnostic about the final outcome of

sentence processing: it is almost always assumed that readers recover the correct meaning

of the sentence. By ‘a same representation’ we refer to the correct (or at least, literal)

meaning of the sentence. Despite that previous research showed that this assumption

is questionable as readers can involve in good-enough comprehension (Ferreira, Bailey,

& Ferraro, 2002) and semantic illusion (Sanford & Sturt, 2002), little is known about

to what extent is eye movements related to sentence comprehension. In this study, we
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address this question by predicting comprehension from eye movements using machine

learning models and evaluating models’ performance in different settings, such that we

reveal eye movement patterns that predict sentence comprehension and confirm that eye

movements predict comprehension in a way that a rational model of reading expects.

One approach to infer comprehension from eye movements is to use machine learning.

In previous studies that have taken this approach, comprehension is measured by read-

ers’ performance of answering comprehension questions after reading a few paragraphs

(Copeland & Gedeon, 2013; Mart́ınez-Gómez & Aizawa, 2014). A comprehension score

can be computed accordingly, allowing predicting non-native readers’ language ability

from eye movements (Okoso et al., 2015; Yoshimura, Kise, & Kunze, 2015) or text diffi-

culty (González-Garduño & Søgaard, 2018). Regarding how eye movement data are used

and which eye movement features are included, there does not seem to be a consensus.

In general, these studies use all kinds of eye movement features, such as reading times,

number of fixations, number of different types of saccades (e.g. regression to previous

text), and even saccade lengths and pupil sizes (Copeland & Gedeon, 2013; González-

Garduño & Søgaard, 2018; Mart́ınez-Gómez & Aizawa, 2014; Mishra & Bhattacharyya,

2018). Since these studies usually aim to maximize prediction accuracy rather than to

answer how reading process works, the eye movement features they use are not selected

based on a particular cognitive theory and are potentially confounded with text properties,

preventing these studies from attributing comprehension failures to particular linguistic

phenomena or processing mechanisms. In this study, we attempt to address these issues

by applying machine learning models to predict comprehension in a well-designed reading
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experiment, and by examining if integrating eye movement features in a principled way

helps machine learning models’ predictions.

A theoretical framework regarding the relationship between eye movements and lan-

guage processing is the rational model of reading. In this model of reading, readers

actively acquire visual information by moving their eyes to the most informative part of

the text, such that they combine visual information and language knowledge to identify

the text efficiently (Bicknell & Levy, 2010, 2012b; Legge et al., 1997, 2002). This pro-

cess is full of noise, even at the level of word identification that serves as the basis of

comprehension. In fact, readers do not always achieve an outcome that is fully consis-

tent with the text; for example, readers tend to adopt higher prior-probability syntactic

structures rather than maintain fidelity to text when processing garden-path sentences

(Levy, 2011), and they are as easily primed by transposed-letter primes as do identity

primes (jugde/judge–JUDGE) (Perea & Lupker, 2003). Rational model of reading can

be modeled using Bayesian belief updating, where readers’ uncertainty of the identity of

the word is measured by the posterior distribution of each possible identity of the text,

which is calculated from a prior of probabilistic knowledge of the structure of the language

and a likelihood of uncertain visual evidence (Bicknell & Levy, 2010, 2012b). With the

assumption that a reader’s language knowledge remains unchanged during sentence read-

ing, the posterior distribution largely depends on the visual input. Therefore, if readers

obtain enough visual evidence that is critical for word identification, they are more likely

to adopt a correct comprehension that is consistent with the text’s visual representation

rather than one consistent with language knowledge but inconsistent with the text’s visual

representation.
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To examine these predictions of rational model of reading, we focus on a situation in

which readers may adopt a comprehension that is largely based on visual information or

one that is largely based on language knowledge. This situation is identifying a word with

a visually similar neighbor that fits better in the sentence. Two words are neighbors if they

have the same number of letters and differ in exactly one letter position (e.g., glass and

grass are neighbors), or their Damerau–Levenshtein edit distance is exactly one, meaning

that they require exactly one edit (insertion, deletion, substitution, and the transposition

of two adjacent characters) to transform to each other (Slattery, 2009). We say a word has

a higher frequency neighbor (HFN) if there exists a neighbor of it with a higher frequency.

Slattery (2009) has found processing cost in terms of longer reading times for readers to

process words with HFN than words without HFN during sentence reading. This pattern

has been explained as that HFN competes with the target word and induces an inhibitory

effect. In other words, the uncertainty of the word’s identity remains high because both

the target word and its HFN receive supporting evidence from information sources (i.e.

visual input and language knowledge), and it takes time to acquire visual evidence such

that the reader becomes confident that one word identity is more likely than the other.

In this study, we examine to what extent could comprehension be predicted from eye

movements and whether eye movements predict comprehension in the way that rational

models of reading expect by looking into the identification of words with a HFN during

sentence reading. Specifically, we collect eye-tracking data in an experiment in which

participants read sentences containing a target word with a HFN, and answer a compre-

hension question with choices consistent with either the target word or the HFN word.

In this case, comprehension is measured in terms of answer accuracy. We then examine
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a set of a priori eye movement features that should be predictive of whether the readers’

answers are correct, and check these features’ effects using generalized linear mixed effect

models. To better evaluate to what extent could eye movement features predict readers’

answer accuracy in unseen trials, we implement machine learning models, and evaluate

the models’ ability to generalize across new participants and regimes. We also examine

machine learning models’ performance with a feature generated from a rational model of

reading, namely the (logit-transformed) probability of the target word, to directly test

the rational model’s predictions. We conclude the paper with a general discussion.

5.1.1. Related work

5.1.2. Machine learning and eye movements

As eye-tracking techniques become popular, more and more research are conducted in the

intersection of machine learning and eye movements in recent years. These research mainly

fall into two areas: 1) predicting human readers’ comprehension of text from eye move-

ments (Copeland & Gedeon, 2013; Copeland, Gedeon, & Caldwell, 2015; Mart́ınez-Gómez

& Aizawa, 2014; Mishra, Dey, & Bhattacharyya, 2017; Mishra & Bhattacharyya, 2018;

Okoso et al., 2015; Sanches, Augereau, & Kise, 2017, 2018; Yoshimura et al., 2015), and

2) incorporating eye movement features in state-of-the-art natural language processing

(NLP) models to improve these models’ performance (Barrett, Bingel, Keller, & Søgaard,

2016; Barrett, Bingel, Hollenstein, Rei, & Søgaard, 2018; Barrett & Søgaard, 2015; Hol-

lenstein & Zhang, 2019). Although these studies focus on different areas rather than the
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mechanism of eye movements in reading, and implicitly assume that humans’ eye move-

ments accurately reflect readers’ attention distribution and online cognitive processing,

their methods and findings set up valuable reference.

The first set of studies usually collect eye-tracking data from around 10 participants

(expect for Copeland et al., 2015, which has 70 participants) reading around 10 pieces of

texts (each text usually contains hundreds of words), and measure readers’ comprehension

or language ability with either a few comprehension questions (Copeland & Gedeon, 2013;

Copeland et al., 2015; Mart́ınez-Gómez & Aizawa, 2014), self-rating of readers’ subjec-

tive comprehension score (Sanches et al., 2017, 2018), standardized language-test scores

(Yoshimura et al., 2015), or readers’ annotation of the text (Mishra et al., 2017; Mishra &

Bhattacharyya, 2018; Okoso et al., 2015). These research use descriptive statistics, cor-

relation metrics, and t-tests to see if eye movement features predict comprehension score

or classify readers according to their language abilities. Although eye movements seem to

predict readers’ comprehension or language ability, comparisons with any baseline model

trained with other features (especially text features) are absent.

The second set of studies extract eye movement features from existing eye movement

corpora (e.g. Dundee, Kennedy & Pynte, 2005, and ZuCo, Hollenstein et al., 2018) instead

of collecting new data. Eye movement features are incorporated NLP models, either by

concatenating them with word embeddings (Hollenstein & Zhang, 2019), concatenating

them with language model features such as frequency (Barrett et al., 2016), or serving as

a constraint of attention (Barrett et al., 2018). In several NLP tasks (e.g. POS tagging,

Barrett & Søgaard, 2015; Barrett et al., 2016; named entity recognition, Hollenstein &

Zhang, 2019; sentence compression, Klerke, Goldberg, & Søgaard, 2016; and sentiment



113

analysis, Barrett et al., 2018), adding eye movement features improve model performance,

though to a relatively weak extent: in Barrett et al. (2018), a baseline model of attention

calculated from frequency performs worse than the eye movement attention model by

around 1% in terms of F1 score, and in Barrett et al. (2016), the eye movement features

alone do not give best performance, and the best feature group (including all features)

only outperforms a group of non-gaze features by a 2% in terms of tagging accuracy.

5.1.3. Rational models of reading

Previous instances of rational models of reading have provided explanations for several

eye movement phenomena. For example, they explain why the initial fixation tends to

land near word center and is affected by the launch distance (Legge et al., 2002), why

readers often make regressions to previous words (Bicknell & Levy, 2010), and why high-

frequency and low-surprisal words yield lower reading difficulty than low-frequency and

high-surprisal words (Bicknell & Levy, 2012b). In the field of single word identification,

Duan and Bicknell (2017) implemented a rational model of refixations, and found that

readers rationally make refixations to seek visual information from parts of the word about

which the readers are uncertain. Duan and Bicknell (2020) implemented a rational model

of skipping and found that humans’ skipping rate is better predicted by posterior dis-

tribution’s entropy than by conventional eye movement measures, suggesting that visual

and linguistic information is combined rationally.
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Compared with previous research, our current study extends the scope of predicting

eye movement behaviors itself to predicting language processing outcome from eye move-

ments. It also provides an instance of applying rational model of reading to generate

useful features for predictive modeling.

5.2. Experiment and data collection

5.2.1. Participants

Fifty-four students from the University of California, San Diego participated this experi-

ment. They were all native speakers of English with normal or corrected-to-normal vision.

They received either course credit or cash as compensation for their time.

5.2.2. Materials and design

Fifty-eight sentences were created, each containing a target word with a high-frequency

neighbor (HFN) that was more plausible given the context (Table 5.1). Target words

consisted of four to six letters (4 letters: 17 or 29%, 5 letters: 29 or 50%, and 6 letters:

12 or 21%). The target and its HFN were always of the same length, sharing the same

first letter, and requiring either a substitution (32 or 55%) or a transposition (26 or 45%)

operation to transform to each other. A paired t-test showed that the log word frequency

of target words were significantly lower than the log word frequency of HFNs (p < 0.001).

To examine readers’ comprehension of the sentence and especially their comprehension

regarding the identification of the target word, each sentence was paired with a multiple

choice question. Participants chose only one answer from four choices: one consistent

with correct identification of the target word, one consistent with identification of the
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Table 5.1. Example sentence. The high-frequency neighbor (HFN) of the
Target word (minuet) is minute.

Sentence:
I’m really glad that the last minuet went by so quickly and I could finally go home.
Question:
What was I probably watching to look for cues that I could leave?
A. an orchestra (correct) B. a clock (incorrect; HFN consistent)
C. the president (incorrect; unrelated) D. a weather report (incorrect; unrelated)

target word as its HFN, and two unrelated choices. By measuring readers’ comprehension

in such an indirect way instead of directly asking readers what the word was with two

options, readers were more likely to read in a natural way and were less prone to adopt

strategies specific to this task.

5.2.3. Procedure

Participants were calibrated by looking at a random sequence of fixation points presented

horizontally across the middle of the computer screen. A fixation cross was presented at

the position on the screen where the first character of the sentences would appear. Once

a stable fixation was detected within this area, the whole sentence appeared. Partici-

pants were instructed to silently read the sentence and to press a key on a keyboard when

they finished reading. A comprehension question then appeared, and participants were

instructed to choose an answer by pressing a key on the keyboard based on their com-

prehension of the sentence. Each participant read all 58 sentences, with sentence order

randomized for each participant. Participants underwent three practice trials before the

experimental sentences.
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5.3. Analysis 1: Eye movement features predictive of comprehension

This analysis aims to examine which eye movement features are predictive of com-

prehension. To this end, we focus on a set of a priori eye movement features that are

known to be indicative of human language processing, and evaluate these features’ effects

of predicting comprehension accuracy in generalized linear mixed-effect models.

5.3.1. Method

5.3.1.1. Eye movement features. Based on previous reading research, we selected

nine eye movement features, roughly corresponding to two categories: eye movement

features that directly relate to critical visual input acquisition, as reading times and eye

movements that seek visual information (e.g. regression into the target word) increased

as text difficulty increased (Copeland & Gedeon, 2013; Mart́ınez-Gómez & Aizawa, 2014;

Rayner, Chace, Slattery, & Ashby, 2006); and eye movement features that indicate general

difficulty of processing the whole sentence, as readers fixated sentence-final words for a

longer time and initiated more regressive saccades from there if they detected difficulty

in the sentence and carried out reanalysis (Frazier & Rayner, 1982; Von der Malsburg

& Vasishth, 2011; Weiss, Kretzschmar, Schlesewsky, Bornkessel-Schlesewsky, & Staub,

2018).

• Eye movement features that directly relate to critical visual input acquisition. We

include the following features: (1) Target word total dwell time is the sum of

all fixations’ duration on the target word; (2) Target word skipping is whether

the target word is skipped during first-pass reading or not; (3) Target word ever

fixated is whether at least one fixation directly lands on the target word or not;
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(4) Regression into target word is whether the target word is fixated following

a regressive saccade or not; (5) Target character total dwell time is the sum

of all fixations’ duration on the target character, which is defined as the character

in the target word that needs to be replaced, or the first character that needs to

be transposed, to transform to its HFN; (6) Target character ever fixated is

whether at least one fixation directly lands on the target character or not; (7)

Target character refixated is whether the target character receives more than

one fixation during the whole reading process;

• Eye movement features that do not directly relate to critical visual input acquisi-

tion, but rather indicate general difficulty of processing the whole sentence. We

include the following features: (8) Total reading time on the sentence’s

last word is the sum of all fixations’ duration on the last word of the sentence;

(9) Regression out from the sentence’s last word is whether a regressive

saccade is launched from the sentence’s last word or not.

Besides eye movement features, text features such as word frequency were known

to be predictive of comprehension as the more frequent a word was, the more likely a

reader was to identify it as that word (Barrett et al., 2016; Mart́ınez-Gómez & Aizawa,

2014). For this reason, we examined the effects of the target word’s frequency and its

HFN’s frequency in predicting comprehension, which is computed from a unigram model

trained on the Google One Billion Word Benchmark (Chelba et al., 2013). In addition,

as comprehension depended on both text properties and eye movement behaviors (Balota

et al., 1985; Rayner et al., 1996), we also examined two more features that focused on
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the interaction between total reading time on the target word and (i) the target word’s

frequency or (ii) the HFN’s frequency.

5.3.1.2. Data analysis. Estimates were from a generalized linear mixed model (GLMM)

for sentence comprehension (1 for correct answer, 0 for incorrect answer), with random

intercepts for participants and items using the glmer program of the lme4 package in the

R environment for statistical computing. Each predictor was included as a fixed effect in a

GLMM separately, yielding 13 GLMMs (9 with eye movement features, 2 with frequency

features, and 2 with interactions). We report estimated effect sizes (β̂ values), standard

errors (SE), and z-statistics of fixed effects. Note that our analyses do not serve the

goal of statistical inference, meaning that we do not draw conclusion based on whether

an estimate is statistically significant or not, and therefore we do not correct for multiple

comparisons.

5.3.2. Results & discussion

Trials were excluded from analyses if the same trial was presented for more than once (due

to track loss and re-calibration), leaving 3,064 (98%) trials. Data exclusion was evenly

distributed across participants and items. Participants incorrectly chose an unrelated

choice in 5.0% trials, indicating that they read the sentences carefully; they chose the

HFN choice in 19.5% trials, and correctly chose the target choice in 75.5% trials, indicating

that readers were likely to misunderstand the target as its HFN. We excluded unrelated

choices from further analyses, and only focused on trials in which the target word was

either correctly identified or incorrectly identified as its HFN.
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GLMM results are summarized in Table 5.2. Although most features showed weak

effects, these effects were in expected directions. We observed that 1) fixating the tar-

get word at least once increased the probability of correct word identification; 2) high-

frequency target words and HFNs were more likely to be correctly identified; and 3) total

reading time and word frequency interactively affected word identification, and fixating

high-frequency target words for a longer period of time increased the probability of correct

identification.

Despite that these a priori eye movement features only showed weak effects in pre-

dicting comprehension, we confirmed that the effects were in expected directions. These

analyses also showed that it was difficult to predict the final outcome of language process-

ing based solely on eye movement features or text features; rather, taking both reading

time and word frequency and their interaction into account yielded better predictions.

5.4. Analysis 2: Using machine learning to predict comprehension for new

trials

With the knowledge that eye movement features and text features predict comprehen-

sion as expected, we now turn to examine to what extent comprehension can be predicted

from these features. In this analysis, we frame our task as a classification problem in

machine learning, which predicts whether a reader has answered the comprehension ques-

tion in a trial correctly based on their eye movements during reading. We implement two

machine learning models to predict answer accuracy with the a priori features we have

analyzed in Analysis 1, and compare models’ performance across different algorithms, test
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Table 5.2. Generalized linear mixed-effects model results of eye movement
features and word frequency features.

β̂ SE z-value
Target word total dwell time 0.02 0.06 0.31
Target word skipping -0.04 0.06 -0.68
Target word ever fixated 0.13 0.06 2.39
Regression into target word 0.06 0.06 1.09
Target character total dwell time 0.02 0.05 0.32
Target character ever fixated 0.05 0.06 0.83
Target character refixated 0.04 0.06 0.69

Total reading time on the sentence’s last word 0.09 0.06 1.47
Regression out from the sentence’s last word 0.08 0.06 1.30

Target word frequency 0.26 0.21 1.22
HFN frequency 0.49 0.21 2.33

Target word frequency × TD 0.14 0.05 2.77
(Main effect: Target word frequency) 0.25 0.22 1.14
(Main effect: TD) 0.04 0.06 0.71
HFN word frequency × TD 0.09 0.05 1.57
(Main effect: HFN word frequency) 0.49 0.21 2.29
(Main effect: TD) 0.03 0.06 0.50

regimes, and feature sets. This analysis serves two goals: 1) directly examine if compre-

hension can be predicted from eye movements, and 2) evaluate the generalization ability

of machine learning models trained with different features in predicting answer accuracy.

5.4.1. Method

5.4.1.1. Models. We implemented two classification models: a regularized logistic re-

gression (hereafter LR) model and a XGBoost (eXtreme Gradient Boosting, hereafter

XGB) model. Both models used eye movement features and text features to predict the

binary label that whether a reader correctly comprehend a sentence or not. The LR model

used a logistic function to relate the features to the comprehension label. This model was
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simple, easy to interpret, and less likely to overfit, but it only considered linear effects

and tended to underfit. In contrast, the XGB model used gradient boosted trees to make

predictions from features. This model was complex and was able to capture nonlinear

relations among features, but it was hard to interpret and tended to overfit when dataset

was small.

5.4.1.2. Evaluation metric. We measured classifiers’ performance using AUC, which

referred to the area under the receiver operating characteristic curve (ROC). The AUC

measure was equal to the probability that a classifier will rank a randomly chosen positive

instance higher than a randomly chosen negative one. The AUC ranged between 0 and

1, with a chance level of 0.5, and a higher AUC indicated better performance. This is

a standard evaluation metric in machine learning for imbalanced classification problems,

such as our dataset. We report the 95% confidence interval of the AUC on the full datset,

calculated using bootstrap resampling with 10,000 replicates.

5.4.1.3. Experiment setting. To prevent the machine learning models from overfitting

the training data and to increase generalization ability, we tuned hyperparameters of these

models by 1) creating folds that consisted of participant (or item) pairs that yielded similar

average accuracy and 2) conducting nested leave-two-out cross-validation.

First, to account for the large difference of accuracy among items (ranging from 0.07

to 1) and subjects (ranging from 0.57 to 0.98), we used stratified leave-two-out cross-

validation instead of simple leave-one out cross-validation. Specifically, each fold consisted

of two items (or subjects), one with a high accuracy score and one with a low accuracy

score, such that the average accuracy was roughly the same across different folds. In this

way, training folds and test folds preserved similar percentage of samples for each class,
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increasing the chance that classifiers trained on the training data could generalize to test

data as well.

Second, two layers of cross-validation were conducted: 1) each pair of subjects (or

items) served as the test set and the rest as training set; and 2) within the training set,

we carried out leave-one-pair-out cross-validation to select the best hyperparameters that

maximized the evaluation metric (specifically, AUC, see below) on this training set. The

advantage of nested cross-validation was that the whole dataset was used in training,

validation, and test, which maximized the efficiency of data usage, and was appropriate

in our setting with a relatively small dataset.

For both models, we tuned a L2 regularization hyperparameter α with grid search,

such that minf
∑n

i=1(f(xi, w)−yi)2 +α ‖w‖2 served as the loss function, where n denoted

the sample size, f denoted the machine learning model (either LR or XGB), and w denoted

weights. The regularization hyperparameter ranged between 0 and 30, to the power of 2,

and we search with 120 grids. Specifically for XGB, we used a learning rate of 0.03 and

a max depth of trees of 6.

5.4.1.4. Test regimes. To examine whether classifiers could generalize to new subjects

and new items, we split the data based on subjects and items. Figure 5.1 illustrates the

data split for these two test regimes.

5.4.2. Results & discussion

The AUCs of models predicting word identification accuracy with different settings are

shown in Fig. 5.2.
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Figure 5.1. Illustration of the data split for new subject and new item regimes.

Regarding the contribution of different features, we found that 1) with eye movement

features alone, both LR and XGB were able to predict word identification accuracy better

than chance in leave-out-subject regime (AUC = 0.53, 95%CI = [0.50, 0.55] with XGB;

AUC = 0.52, 95%CI = [0.50, 0.55] with LR), and marginally better than chance in

leave-out-item regimes (AUC = 0.52, 95%CI = [0.49, 0.55] with XGB; AUC = 0.51,

95%CI = [0.48, 0.54] with LR); 2) text features predicted word identification accuracy

better than chance in almost all settings (except for leave-out-item regime with XGB);

and 3) no obvious improvement was observed by adding eye movement features to text

features, as indicated by similar performance of text features and all features (AUC =

0.80, 95%CI = [0.78, 0.82] vs. AUC = 0.79, 95%CI = [0.77, 0.81] in leave-out-subject

regime with XGB; AUC = 0.60, 95%CI = [0.57, 0.62] vs. AUC = 0.61, 95%CI =

[0.58, 0.63] in leave-out-subject regime with LR; AUC = 0.50, 95%CI = [0.47, 0.53] vs.

AUC = 0.50, 95%CI = [0.47, 0.53] in leave-out-item regime with XGB; and AUC = 0.55,

95%CI = [0.52, 0.57] vs. AUC = 0.56, 95%CI = [0.54, 0.59] in leave-out-item regime

with LR).
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Regarding model performance in different test regimes, we found that it was more

difficult to generalize across different items than across different subjects, as indicated

by consistently lower performance in leave-out-item regimes than in leave-out subject

regimes.

Regarding different machine learning models, we found that XGB yielded the highest

performance with text features in the leave-out-subject regime. Roughly speaking, XGB

performed better than LR in leave-out-subject regimes, while LR performed better in

leave-out-item regimes.

In general, we observed that eye movement features were generally weakly predictive of

word identification accuracy, suggesting that eye movements did contain information pre-

dictive of comprehension. However, text features were even more predictive, and machine

learning models did not benefit from adding eye movement features to text features.

We also noted that predicting word identification accuracy on unseen items were more

difficult than on unseen subjects. This pattern suggested that the variation across items

were much larger than the variation across subjects in our dataset. Future research

could address this issue by reducing the variation between sentences, such as focusing on

the comprehension of sentences with high-probability syntactic structures, in which case

syntactic structures may be robust to lexical-level variation and invoke similar responses

across sentence instances.

5.5. Analysis 3: Rational model simulation

To account for the small size of our dataset and to see if a theory-driven model of com-

bining visual and linguistic information help predict comprehension from eye movements,
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Figure 5.2. AUCs of logistic regression (LR) and XGBoost (XGB) models
with text, eye movement, and all features to predict correct/incorrect word
identification.

we implemented a rational model to mimic the word identification process, and examined

if the probability of the target word predicted word identification accuracy. We repeated

Analyses 1 and 2 with this sole predictor. If readers gather visual information rationally

during reading, a higher probability of target word in the posterior distribution generated

by rational model simulation would predict higher word identification accuracy.

5.5.1. Method

5.5.1.1. Rational model. Following previous rational models (Bicknell & Levy, 2010,

2012b; Duan & Bicknell, 2017, 2020), word identification is modeled as Bayesian inference,

in which a prior distribution over possible identities of the text given by its language model

is combined with a likelihood term given by ‘noisy’ visual input at the position of fixation

to form a posterior distribution over the identity of the text given all information sources.
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Formalized with Bayes’ theorem,

p(w|I) ∝ p(w)p(I|w)(5.1)

where the probability of the true identity of the word being w given uncertain visual input

I is calculated by multiplying the language model prior p(w) with the likelihood p(I|w)

of obtaining this visual input from word w, and normalizing.

In general, the prior p(w) represents reader expectations for words conditioned on

the context, but for the present paper, we ignore context and use only a word frequency

model for simplicity. The visual likelihood is computed similarly to in (Bicknell & Levy,

2010): each letter is represented as a 52-dimensional vector with a single element being

1 and the rest being 0s. Visual input about each letter is accumulated iteratively over

time by sampling from a multivariate Gaussian distribution centered on that letter with a

diagonal covariance matrix Σ = λ−1I, where λ is the reader’s visual acuity for that letter.

Visual acuity depends on the location of the letter in relation to the point of fixation,

which is a function of the letter’s eccentricity ε. In our model, we assumed that acuity is

a symmetric, exponential function of eccentricity:

λ(ε) =

∫ ε+.5

ε−.5

1√
2πσ2

exp(− x2

2σ2
)dx(5.2)

with σ = 3.075, the average of two σ values for the asymmetric visual acuity function

(σL = 2.41 for the left visual field, σL = 3.74 for the right visual field) used in (Bicknell &

Levy, 2010). In order to scale the quality of visual information, we multiply each acuity

λ by the overall visual input quality Λ. In this paper, we adjusted Λ such that the overall
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average probability of the target word in a given period of time (see below) was close to

the overall average accuracy in human response.

For the language model component of the word identification model (the prior), we

used word frequency information (a unigram model) trained on the Google One Billion

Word Benchmark (Chelba et al., 2013).

5.5.1.2. Simulation. We simulated the process of identifying a target word using the

aforementioned rational model of reading. For each item, we used a vocabulary containing

only two words: the target word and its HFN. For each trial, we selected fixations that

were close to the target word, specifically those landed no more than 5 characters before

the word and no more than 5 characters after the word. For each fixation, we simulated a

fixation that landed on the same location, and accumulated random visual samples for n

time steps, where n equals the duration of this fixation in milliseconds divided by 50 and

rounded down to the largest integer no greater than the quotient. After sampling visual

evidence with these fixations, a posterior distribution that indicated the probability of the

target word and the HFN was generated, and we focused on the probability of the target

word. For each trial, such a simulated identification process was repeated for 30 times,

and we averaged the logit-transformed probability of the target word to reduce random

noise, yielding a single value indicating the rational model’s confidence of identifying the

target word correctly.

5.5.2. Results & discussion

We first examined the effect of logit-transformed target word probability in predicting

identification accuracy using GLMM, following the same procedures as in Analysis 1.
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Results showed that high target word probability indicated correct identification as pre-

dicted, β̂ = 0.084, SE = 0.076, z = 1.12.

We then examined if target word probability predicted word identification in unseen

trials by carrying out Analysis 2 with logit-transformed target word probability serving

as the only feature. The performance was shown in Fig. 5.3. Target word probability

predicted word identification accuracy in almost all settings (AUC = 0.55, 95%CI =

[0.52, 0.58] for leave-out-subject regime with XGB; AUC = 0.57, 95%CI = [0.54, 0.59]

for leave-out-subject regime with LR; AUC = 0.53, 95%CI = [0.50, 0.55] for leave-out-

item regime with XGB; and AUC = 0.56, 95%CI = [0.53, 0.58] for leave-out-item regime

with LR). This pattern suggested that eye movements contained information predictive of

word identification accuracy. Note that this one-parameter model performed better than

the machine learning models with many more parameters in Analysis 2, suggesting the

promise in using principled models for predicting comprehension from eye movements.

5.6. General discussion

The current study examined if comprehension can be predicted from eye movements

and if eye movements predict comprehension in the way that a rational model of reading

would expect by studying the identification of words with HFNs. Through three analyses,

we found that 1) a priori eye movement features predicted word identification accuracy

in the expected direction, 2) machine learning models trained with just eye movement

features predicted significantly better than chance, although the performance also varied

depending on different test regimes and did not outperform machine learning trained with

text features; and 3) the probability of the target word generated from rational model
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with rational model’s prediction of the target word’s probability to predict
correct/incorrect word identification.

simulation predicted comprehension accuracy, and machine learning models trained with

this feature was able to predict accuracy better than random.

Overall, these results provide supportive evidence that eye movements contain infor-

mation predictive of comprehension. The current study is the first one, to our knowledge,

to examine the relationship between eye movements and comprehension at the level of

individual trials. Our findings suggest that studying readers’ eye movements helps under-

standing human language processing, which is taken for granted without careful examina-

tion in sentence reading studies. Our finding that generalization across different items is

more difficult than generalization across different subjects suggest that researchers should

pay close attention to language materials they use in an experiment, as language materi-

als may vary a lot, and may not be representative of the phenomenon that is central to
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researchers’ interest. One possible way to address this issue is to carefully evaluate lan-

guage materials beforehand, and another way is to use a large set of language materials

instead of increasing the number of participants.

The current study also contributes to the research of rational models of reading, es-

pecially in the application of using this model to predict human reading processing and

outcome. Comparing between our Analysis 2 and 3, the performance of models in Anal-

ysis 3 are pretty impressive, as they use just one feature, in contrast to many features in

Analysis 2. This result suggests that rational models of reading extract information that is

more informative of reading process than traditional eye movement features. In addition,

this also provides a promising direction for future analysis of eye movement data, sug-

gesting that it is possible to use a comprehensive metric to measure language processing

outcome instead of analyzing multiple eye movement measures, which potentially suffers

from multi-comparison issues.

The current study can be improved in many ways. One is the use of machine learning

techniques to predict comprehension. Given the large space of machine learning models,

in terms of both algorithms and hyperparameters, our choices of models are arbitrary

to some extent. For example, instead of evaluating model performance for each regime

and feature combination separately, we could optimize overall model performance across

different regimes and features. Such change is likely leading to different choices of hy-

perparameters and exact value of AUCs. However, it is unlikely to influence our main

findings that eye movement features alone predict accuracy better than chance and that

generalization across items is more difficult than across subjects, as these observations are

robust across a simple model (LR) and a highly flexible model (XGB). Instead of the exact
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numbers of AUCs, we focus more on what these machine learning models reveal regarding

the relationship between eye movements and comprehension. It requires collection of a

large and representative dataset, delicate feature engineering, skillful algorithm design,

and careful model selection to find the best machine learning models that predict com-

prehension from eye movements to the maximum extent. This is out of the scope of the

current study, and the current study should not be interpreted as the best performance

that could be achieved by a machine learning model with eye movement features.

In sum, this study confirms that eye movements are revealing of language processing

and word identification. We also evaluate the generalization ability of this claim across

subjects and items, and point out the importance of taking into account the variation

in language materials. Our rational model simulation suggest that comprehension can

be better predicted with an integrated metric generated by the Bayesian belief updating

model of reading, providing supportive evidence for the perspective of considering eye

movements as rational behaviors of gathering visual information for text identification.
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CHAPTER 6

Conclusion

6.1. Summary of results

In this dissertation we closely examined the rational account of eye movements in

reading and provided evidence that such an account offers qualitatively and quantitatively

better explanations for human eye movements than dominant models of eye movements in

reading that embedded a standard account of word identification. Chapter 2 showed that

humans were more likely to make forward refixations for closer launch sites, which was

a pattern predicted by the rational account but strongly inconsistent with the standard

account of word identification in reading. These results suggested that visual information

obtained from a series of eye fixations was processed constructively to identify a word and

to guide eye movements. Chapter 3 demonstrated that readers’ within-word eye movement

behaviors, in terms of gaze duration and refixation rate, not only depended on initial

landing position and word frequency, but also depended on interactions between visual

and linguistic knowledge, especially a word’s particular visual neighborhood structure.

This sensitivity to the structure of the particular word was shown in human data, and

was only predicted by a rational model of eye movements. Chapter 4 showed that human

skipping decisions were better predicted from the entropy of the posterior distribution

of word identification than from a baseline model with coarse features used to model

eye movements in dominant models. Finally, Chapter 5 showed that the rational model
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provided a more robust way to predict readers’ comprehension from their eye movements

than the way used by dominant models, suggesting that human readers were able to

identify words and make eye movement decisions in a rational way.

Taken together, these results suggest that we can understand eye movements in read-

ing as resulting from rationally combining visual and linguistic information to identify

the word and using optimized strategy to move the eyes to identify the word quickly

and accurately. These findings provide supportive evidence that a rational model of eye

movements in reading explains eye movements in word identification, extending previous

findings about rational models of reading in explaining sentence-level and word-level eye

movement behaviors to a more fine-grained level. Moreover, we propose a new policy

learned through deep reinforcement learning that maps readers’ real-time state of knowl-

edge about the world to eye movement decisions and show that this policy outperforms

existing heuristic policies, providing a useful tool and framework for future research of

eye movements in reading.

6.2. Future directions

A potential future direction is to further explore how visual and linguistic informa-

tion interact in word identification by using different visual parameters, or even using

different visual representations. We did not tune visual parameters to reflect human’s

vision; we reported qualitative similarities between human eye movements and our mod-

els’ behaviors in two of the four studies. Fitting those parameters to reflect human visual

processing rate would help evaluate the models’ behaviors quantitatively. In addition, our

visual representation was simple and did not take visual similarities among letters into
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consideration, which can be improved to be more realistic by incorporating a character

confusion matrix, or even using an image-based representation for each letter.

Another direction is to go beyond linguistic priors generated from language models

and incorporate other sources of linguistic information, such as syntactic information and

semantic information. These knowledge have been proved to alter humans’ expectations

about upcoming words in real-time language processing (DeLong, Urbach, & Kutas, 2005;

Kuperberg & Jaeger, 2016), which corresponds to the idea of the prior in the Bayesian

model of word identification. Our current n-gram representation of the prior is not ex-

pected to capture eye movements observed in psycholinguistic experiments with manipu-

lation of syntactic or semantic cues. Extending the model of eye movements in reading in

this direction could yield models that help evaluate whether the rational model can still

explain eye movements in reading under the influence of higher-level language processing.

A third direction is to thoroughly evaluate the optimal eye movement policy learned

from reinforcement learning. Besides the patterns of within-words eye movements in

terms of gaze duration and refixation rate, we can further examine how the policies differ

depending on specific knowledge of the world, and thus shed light on potential structures

of the knowledge used in eye movements decision making. In general, this new tool of

reinforcement learning can be used in various ways, and help understand eye movement

decision making both in reading and also in other situations involving eye movements.
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